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Abstract
The reproducibility of NLP research has
drawn increased attention over the last few
years. Several tools, guidelines, and metrics
have been introduced to address concerns in
regard to this problem; however, much work
still remains to ensure widespread adoption
of effective reproducibility standards. In this
work, we review the reproducibility of Ex-
ploring Neural Text Simplification Models by
Nisioi et al. (2017), evaluating it from three
main aspects: data, software artifacts, and au-
tomatic evaluations. We discuss the challenges
and issues we faced during this process. Fur-
thermore, we explore the adequacy of current
reproducibility standards. Our code, trained
models, and a docker container of the environ-
ment used for training and evaluation are made
publicly available.

1 Introduction

In a survey conducted among 1,576 scientific re-
searchers by Nature (Baker, 2016), 90% believed
that there is at least a slight crisis when it comes to
the reproducibility of research. Although there are
no concrete statistics, the quantity and the growth
of machine learning publications that rely on em-
pirical evidence have recently raised alarms. To im-
prove reproducibility, this community has designed
checklists (AAAI, 2022; ACL, 2022; Deutsch et al.,
2022), guidelines (ACM, 2022), and challenges
(Sinha et al., 2022; Belz et al., 2021), which high-
light the importance of reproducibility, encourage
best practices, and create a platform for conducting
reproducibility studies.

Still, measures of reproducibility “in the wild”
(that is, pertaining to real, widely cited machine
learning and natural language processing studies)
are limited. In this work, we set out to reproduce
one such study as a case example to provide a
concrete measure of reproducibility for a specific
work. We select Exploring Neural Text Simplifi-
cation Models by Nisioi et al. (2017). This paper

poses an intriguing case: the research artifacts re-
leased by the authors are of high quality, the details
they have provided match or exceed the current
reproducibility recommendations, and two other re-
producibility studies (Cooper and Shardlow, 2020;
Belz et al., 2022) have successfully reproduced
the results with high precision. Reviewing a high-
quality scientific publication that has been the fo-
cus of multiple reproducibility studies enables us
to build and expand upon those works.

Our primary objective is to investigate the ease
with and extent to which the selected paper can
be reproduced. We limit introducing new config-
urations, adding them only to cases necessary for
further understanding the reproducibility results
and not for competing scenarios. In Section 2, we
present the background, the task itself, the model,
and its variants. In Section 3, we describe our
methodology and the steps we take to review the
reproducibility of Nisioi et al. (2017)’s work. In
particular, we look at associated data, software arti-
facts, and automatic evaluations. We present our re-
sults in Section 4, before concluding by discussing
our findings and recommendations for addressing
the shortcomings of current checklists (Section 5).
We release our reproducibility artifacts to facilitate
and promote future reproducibility studies (Arvan
et al., 2022). These artifacts include the updated
source code, trained model, and complete runtime
environment in a self-contained docker container.

2 Neural Text Simplification

Nisioi et al. (2017)’s work explores the task of neu-
ral text simplification. In this task, the goal is to
transform a given text into a simpler version while
retaining its meaning. What constitutes simplicity
itself raises complicated questions since simplicity
could be observed in the form of lexical simplifica-
tion, content reduction, and grammatical or struc-
tural modification. Data-driven techniques attempt
to achieve simplicity through automated metrics



and human evaluation. The task holds many paral-
lels with machine translation (MT), and this fram-
ing allows models studied in the context of neural
MT (e.g., neural sequence to sequence models) to
be adapted and deployed for neural text simplifica-
tion.

Nisioi et al. (2017)’s work is one of the first
investigations of neural sequence to sequence mod-
els for automatic text simplification. In particular,
they use Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1996, 1997)
in an encoder-decoder architecture that has demon-
strated success in similar sequence to sequence
problems (Luong et al., 2015). The encoder LSTM
computes a representation for each source sentence,
and the decoder LSTM generates an output given
the encoded representation and previously gener-
ated tokens. Nisioi et al. (2017) also employ a
global attention mechanism that provides a more
dynamic information flow and increases the rep-
resentation bandwidth. To avoid overfitting, they
use dropout (Srivastava et al., 2014), a technique
that injects noise into the input during training by
masking out certain features.

Nisioi et al. (2017) experiment with two variants
of networks: one with random embedding weight
initialization (NTS), and another with pre-trained
embeddings. The latter is built by concatenating
pre-trained word2vec embeddings from the Google
News corpus (Mikolov et al., 2013a) with a locally
trained skip-gram model (Mikolov et al., 2013b)
with hierarchical softmax and a window size of
10. The concatenation process involves utilizing a
unique dictionary associated with the source and
target embeddings. The authors refer to this variant
as NTS w2v.

3 Methodology

There is no standard protocol or set of guidelines
for conducting a reproducibility study, so we rely
on the best practices suggested by others to provide
a subjective and objective evaluation of the repro-
ducibility of Nisioi et al. (2017)’s work. These best
practices originate from checklists (Pineau et al.,
2021), research focused on reporting and evalu-
ation (Dodge et al., 2019; Patterson et al., 2021;
Schwartz et al., 2020), and reproducibility tracks at
conferences and workshops (Deutsch et al., 2022).
Although we do not fill out any checklists, as they
are not created for the purpose of third-party evalu-

Split Sentences

train (EW-SEW) 284,677
validation (TurkCorpus) 2,000
test (TurkCorpus) 359

Table 1: Distribution of sentence pairs across different
data splits, with data sources in parentheses.

ation, we cover nearly all the concerns they attempt
to address.

In the following subsections, we first examine
the data used for this work and then shift our atten-
tion to the released software artifacts. We perform
these preliminary steps to identify potential obsta-
cles to reproducibility and to test the adequacy of
the existing standards. Later, we assess the repro-
ducibility of the reported automatic evaluations.

3.1 Data
Data quality and composition are primary factors
that can significantly impact reported results. Un-
surprisingly, all reproducibility checklists empha-
size the importance of data transparency. Nisioi
et al. (2017) used a corpus of parallel English
Wikipedia and Simple English Wikipedia (EW-
SEW) articles (Hwang et al., 2015) when develop-
ing and evaluating their text simplification model.
EW-SEW includes both manually and automati-
cally aligned sentence pairs and was one of the
largest publicly available datasets for text simplifi-
cation at the time Nisioi et al. (2017)’s paper was
published. Sentences in EW-SEW were filtered
based on Wiktionary-based word-level semantic
similarity scores included in the dataset, with a re-
tention threshold set at 0.45. This resulted in a final
set of 280K+ aligned sentences. EW-SEW does
not have standard validation and test splits; thus,
although Nisioi et al. (2017) used EW-SEW for
training, they used TurkCorpus (Xu et al., 2016)
for validation and testing. TurkCorpus is consider-
ably smaller than EW-SEW and consists of 2000
validation and 359 test sentences.

The final distribution of training, validation, and
test data is shown in Table 1. To preprocess the data,
Nisioi et al. (2017) used the Stanford named entity
recognition (NER) system (Finkel et al., 2005) to
automatically tag the locations, persons, organiza-
tions, and miscellaneous entities in the dataset. We
check the reproducibility of the preprocessing steps
in Subsection 4.1 by reviewing the original dataset,
as well as steps taken to filter and process the data.



3.2 Software Artifacts

Authors may omit purportedly trivial details from
research publications due to strict length limits.
Such details may be crucial for later successful
replication. Fortunately, released software arti-
facts often provide these details and other neces-
sary engineering steps. The ML Completeness
Checklist (Stojnic, 2022) underlines the inclusion
of five items in software artifacts that facilitate re-
producibility and are expected to result in easier
adaptability for future researchers: (1) specification
of dependencies, (2) training code, (3) evaluation
code, (4) pre-trained models, and (5) a README
file including a table of results accompanied by
precise commands to run and produce those results.
Given that Nisioi et al. (2017) provided all of these
items, we investigate the quality and the function-
ality of the released artifacts within this context
by reviewing the aforementioned checklist items,
testing out the provided commands, and rebuilding
the environment using provided materials.

3.3 Automatic Evaluation

Reproducibility and reporting quality are comple-
mentary to one another, and improvements to one
often accompany improvements to the other. We in-
clude task-agnostic metrics and details commonly
used in training and evaluations of neural networks
(Dodge et al., 2019; ACL, 2022) in our assessment
of the reproducibility of Nisioi et al. (2017)’s auto-
mated evaluations. Namely, we check the number
of parameters in the model, the computing infras-
tructure used to achieve results, and the total GPU
hours required to train the model. We also report
the model’s total floating-point operations (fpo)
(Schwartz et al., 2020), providing an estimate of
the amount of computational work performed ir-
respective of the hardware setting. In neural net-
works, the dominant floating-point operations are
ADD and MUL operations performed by a GPU.

Nisioi et al. (2017) evaluated the performance
of their neural text simplification approach using
two automated metrics as well as a human per-
formance assessment. Their automated metrics
included BLEU (Papineni et al., 2002; Wagner,
2010), a precision-based metric commonly used
for machine translation and text simplification; and
SARI (Xu et al., 2016), a metric designed specifi-
cally for text simplification that compares the sys-
tem output against reference output and the input
sentence. The evaluation scripts for these metrics

are included in the source code released by the Ni-
sioi et al. (2017). In addition to calculating the
BLEU score using the script provided by Nisioi
et al. (2017), we also calculate it using sacreBLEU
v2.1,1 a Python library that aims to unify standards
for calculating the BLEU score (Post, 2018).

Ultimately, these metrics are used on various
output files generated by different variants. At first,
we evaluate the original outputs provided by Nisioi
et al. (2017). Then, we use the trained model re-
leased by the authors to generate a new output and
evaluate it using the mentioned metrics. Lastly, we
use the code and the configuration provided by the
authors in their publication and in their source code
to train new models. Using these newly trained
models, we generate yet another set of outputs.
During this process, we are reducing the set of con-
trolled conditions affecting the final results. We
expected variation to increase as fewer conditions
are controlled.

We used these metrics to evaluate the perfor-
mance of our reproduced model, facilitating a di-
rect comparison with the originally reported perfor-
mance. Instead of viewing the reproducibility of
the automatic evaluations as a binary state, e.g., re-
producible or not reproducible, we use Quantified
Reproducibility Assessment (QRA), a framework
proposed by Belz et al. (2022). This framework
defines reproducibility as a condition of measure-
ment, out of a set of conditions that includes dif-
ferent locations, operators, and measuring systems,
among other variables. As a result, identifying and
reporting such conditions is an important part of
this framework. Belz et al. (2022) quantify repro-
ducibility as a measurement of precision. Given a
different set of empirical results in this paper and
previously conducted reproducibility studies, we
present the coefficient of variation with small sam-
ple correction (CV ∗) associated with each variant.

We take two additional steps to verify the claims
based on the empirical results. At first, we use
paired bootstrap resampling (Koehn, 2004) with
1000 samples to compare the performance of the
two main variants on the output files released by
Nisioi et al. (2017). Lastly, considering the rela-
tively small size of the datasets used for training,
validation, and testing, we suspected the random
seed may greatly impact results. Therefore, we
designed an experiment to quantify its impact. We

1https://github.com/mjpost/sacrebleu

https://github.com/mjpost/sacrebleu


trained 36 models 2 with the same configuration but
different unique random seeds. A small variation
in the final results of this experiment suggests that
the effect of the random seed is negligible.

4 Results

In this section, we describe the outcomes of our
reproducibility study in terms of data, software
artifacts, and automatic evaluation.

4.1 Data

We were unable to analyze the original unfiltered
version of the EW-SEW dataset (Hwang et al.,
2015) as planned because the webpage contain-
ing the dataset no longer exists,3 nor could earlier
versions be retrieved using web archival tools (e.g.,
the Wayback Machine4). The released code repos-
itory for the selected paper also does not include
scripts for filtering the dataset. As such, we could
not review or reproduce the authors’ preprocessing
steps. However, the code repository does contain
preprocessed dataset files, which allowed us to per-
form all other steps of our reproducibility analysis.

4.2 Software Artifacts

As mentioned earlier, the authors released a five
star repository according to the ML Completeness
Checklist. The authors listed the required exter-
nal libraries, as well as Python- and Lua-specific
dependencies. Moreover, the authors included a
dockerfile containing the computing environment
used for the experiments. Unfortunately, since a
self-contained docker container was not included,
it is not possible to rebuild the dockerfile, and
most dependencies have been deprecated for years.
These dependencies include Ubuntu 14.04 with an
end of life (EOL) of 2019, Python 2.7 with EOL
of 2020, Torch7 with last active development of
2017, and OpenNMT made obsolete in 2018 due
to lack of support for Torch7, among others. Ulti-
mately, we switched to another docker image based
on Nvidia’s CUDA 10.1 images that comes with
Torch7 installed. This introduced further compli-
cations as recently released GPUs (e.g., those in
the RTX 3000 series) require CUDA 11 or higher.
We avoided this problem for now, but fixing this
problem (which is beyond the scope of our present

214 training jobs failed after running out of storage.
3https://crow.ece.uw.edu/tial/

projects/simplification/
4https://archive.org/web/

work) requires porting Torch7 and rebuilding it
using the appropriate CUDA toolkit.5

Aside from the initial hurdle to get the repository
to a running state, we did not face any major issues
in using the software artifacts. Nisioi et al. (2017)
provided the training code, evaluation code, and
pre-trained models.6 The README file contains
instructions and required commands to produce
the reported results. There were a few minor dis-
crepancies between the provided instructions and
real-world use, but we managed to resolve these
issues. We note that the repository does not contain
all configuration files used for each model vari-
ant. Hence, we use the information provided in the
paper to recreate those.

In reviewing the source code, we found three is-
sues affecting NTS w2v variants. We contacted the
authors regarding these issues, and they graciously
confirmed the first two. At the time of writing this
paper, we still have not heard back regarding the
third reported issue. We intend to investigate the
impact of the first two issues on the results. These
issues are described below.

4.2.1 Issue 1: Data Contamination
The NTS w2v models use a multi-step process to
concatenate the pre-trained Google News word2vec
embeddings and another embedding trained by the
authors using the skip-gram technique. We found
that during the skip-gram training process, this em-
bedding utilized all datasets (including the develop-
ment and test set), introducing data contamination
that may call into question those models’ results.
The models affected by this issue are expected to
have an advantage over other models. However,
the validation and test sets are many times smaller
than the training set, so performance gains may be
negligible to non-existent.

4.2.2 Issue 2: Mismatched Embedding
This issue occurs during the concatenation process
itself. This process uses two dictionaries, one for
the encoder and one for the decoder, to generate the
embedding matrix. However, we found that these
embeddings were mismatched: the encoder used
the decoder’s dictionary, and the decoder used the
encoder’s dictionary. We expect fixing this issue
will improve the performance of affected models.

5Issue is reported here: https://github.com/
nagadomi/distro/issues/11.

6https://github.com/senisioi/
NeuralTextSimplification

https://crow.ece.uw.edu/tial/projects/simplification/
https://crow.ece.uw.edu/tial/projects/simplification/
https://archive.org/web/
https://github.com/nagadomi/distro/issues/11
https://github.com/nagadomi/distro/issues/11
https://github.com/senisioi/NeuralTextSimplification
https://github.com/senisioi/NeuralTextSimplification


System BLEU (µ ± 95% CI)

Baseline: NTS w2v 87.9 (87.9 ± 2.0)
NTS 84.6 (84.6 ± 2.9)

Table 2: Statistical significance analysis performed on
Nisioi et al. (2017)’s released output. With p = 0.0079,
the difference in reported results between the two vari-
ants is statistically significant.

Figure 1: Validation perplexity of NTS w2v variants
during training (lower is better). † indicates contam-
inated conditions, and ‡ indicates mismatched condi-
tions.

4.2.3 Issue 3: Zero Embedding Weight
Lastly, we found that the final embedding matrix
is missing the concatenation step, which results in
zero vectors for all the words. Using a zero embed-
ding weight nullifies the embedding pre-training
altogether.

4.3 Automatic Evaluation

We follow the exact training setup provided by Ni-
sioi et al. (2017), training models for 15 epochs
with early stopping applied. Unlike the original
paper, we did not tune the model using SARI or
BLEU, and used the validation perplexity (lower
is better) for model selection and early stopping.
The translation is performed using beam search.
Beam search generates the first k hypotheses at
each step sorted by log-likelihood of the target sen-
tence given the input sentence. While the authors
experimented with using beam sizes of 5 and 12
and various hypotheses, we limit the scope of our
experiments to 5 beams and 1 hypothesis. The

hardware used for the experiments in the original
paper is not explicitly specified. In our case, we use
an RTX 2080 ti GPU to train the models. Training
took approximately 3 hours. The model had 84
million parameters, of which 50 million belong to
the embedding layer. With a maximum sequence
length of 80 and a batch size of 1, this model used
roughly 3G fpo (3× 109) in a forward pass.

Table 3 contains the results of the original work
(Nisioi et al., 2017) referred to as t1, reproducibil-
ity studies of Cooper and Shardlow (2020) (t2) and
Belz et al. (2022) (t3), and the results calculated
by this paper (t4) with their associated conditions.
To ease the analysis, the results of every variant,
measure, and output are grouped together. With
the two evaluation scripts for calculating BLEU,
we have added six values for BLEU and three for
SARI. To be more specific, we have added auto-
matic evaluation results for the output generated by
Nisioi et al. (2017) or o1, our own output generated
by running the trained model provided by Nisioi
et al. (2017) or o4, and our own output generated
by running our own version of the model or o5. We
note that the model that we trained uses a source
with all the fixes applied; however, to the best of
our knowledge, all the other NTS w2v variants are
trained with the mentioned issues. We present the
precision results of the QRA framework in Table 4.

The NTS variant has CV ∗ values of 1.92 and
1.94 for SARI and BLEU, respectively. With 3.28
and 2.85 for SARI and BLEU, CV ∗ values for NTS
w2v are slightly worse. However, the BLEU score
of the NTS w2v variant reported by Cooper and
Shardlow (2020) seems to be an outlier. By ex-
cluding their score (80.75), CV ∗ reduces to 1.22.
There are two other interesting observations in Ta-
ble 3. First, our reported results for o1 exactly
match the reported results by the original paper;
this suggests that we successfully recreated the en-
vironment they used for their evaluation. Second,
the difference between the reported BLEU for o1
using the sacreBLEU evaluation script (Belz et al.,
2022) and that found by our study implies there are
still several unaccounted factors. We believe the
version of sacreBLEU and the process of running
this evaluation script are possible causes for this
variation.

Table 2 shows results from the paired bootstrap
resampling statistical significance test, with an ob-
jective of determining whether the performance of
NTS w2v in terms of BLEU score is better than the



Object Measur-
and Output Trained by Comp. by Eval. Script by Performed by Measured Value

NTS

BLEU

o1 t1 t1 t1 t1 84.51
o1 t1 t1 t1 t2 84.50
o1 t1 t1 ≈t1 t3 85.60
o1 t1 t1 sb t3 84.20
o1 t1 t1 t1 t4 84.51
o1 t1 t1 sb2.1 t4 84.60
o2 t2 t2 t1 t2 87.46
o3 t1 t3 ≈t1 t3 86.61
o3 t1 t3 sb t3 86.20
o4 t1 t4 t1 t4 86.53
o4 t1 t4 sb2.1 t4 86.60
o5 t4 t4 t1 t4 88.81
o5 t4 t4 sb2.1 t4 88.80

SARI

o1 t1 t1 t1 t1 30.65
o1 t1 t1 t1 t2 30.65
o1 t1 t1 t1 t3 30.65
o1 t1 t1 t1 t4 30.65
o2 t2 t2 t1 t2 29.13
o3 t1 t3 t1 t3 29.96
o4 t1 t4 t1 t4 29.96
o5 t4 t4 t1 t4 30.23

NTS w2v

BLEU

o1 t1 t1 t1 t1 87.50
o1 t1 t1 ≈t1 t3 89.36
o1 t1 t1 sb t3 88.10
o1 t1 t1 t1 t4 87.50
o1 t1 t1 sb2.1 t4 87.90
o2 t2 t2 t1 t2 80.75
o3 t1 t3 ≈t1 t3 89.64
o3 t1 t3 sb t3 88.80
o4 t1 t4 t1 t4 89.40
o4 t1 t4 sb2.1 t4 89.40
o5 t4 t4 t1 t4 87.04
o5 t4 t4 sb2.1 t4 87.10

SARI

o1 t1 t1 t1 t1 31.11
o1 t1 t1 t1 t3 31.11
o1 t1 t1 t1 t4 31.11
o2 t2 t2 t1 t2 30.28
o3 t1 t3 t1 t3 29.12
o4 t1 t4 t1 t4 29.12
o5 t4 t4 t1 t4 29.70

Table 3: Detailed overview of the results of NTS and NTS-w2v. All of the results utilize the source code released
by Nisioi et al. (2017). Outputs o1 to o5 are generated based on the conditions provided in their respected row:
t1=Nisioi et al. (2017), t2=Cooper and Shardlow (2020), t3=Belz et al. (2022), and t4= this paper; and sacreBLEU
versions are represented as sb=unknown version, and sb2.1=version 2.1.

Object Measurand Sample Size Mean Unbiased STDEV STDEV 95% CI CV ∗

NTS SARI 8 30.23 0.56 [0.23, 0.89] 1.92
NTS BLEU 13 86.07 1.64 [0.94, 2.34] 1.94
NTS w2v SARI 7 30.22 0.96 [0.34, 1.58] 3.28
NTS w2v BLEU 12 87.71 2.45 [1.35, 3.54] 2.85

Table 4: Precision (CV ∗) and component measures (mean, standard deviation, standard deviation confidence
intervals) for measured quantity values obtained in multiple measurements of the two NTS systems.

NTS variant. With p = 0.0079, the difference is
indeed statistically significant. Since the output of
NTS w2v is generated using a model affected by
the zero weight embedding issue (Issue 3 described
in Subsection 4.2.3), these two variants are essen-

tially the same. Thus, understanding what is at play
here requires assessing the results in Table 5. Even
with a small sample size of 36, we observe values
ranging from 84.47 to 89.59. This suggests that
the performance difference between the two main



Measurand Mean Min Max

SARI 29.24 ± 0.31 28.62 29.89
BLEU 87.9 ± 1.18 84.47 89.59

Table 5: Results of the random seed experiments on the
TurkCorpus (Xu et al., 2016) test set, with a sample size
of 36. Models are trained with the same configuration,
but have unique random seeds. The evaluation script
by Nisioi et al. (2017) was used.

variants may have originated from having differ-
ent random seeds, even at statistically significant
levels.

Finally, we investigate the issues reported for the
NTS-w2v variant. We exclude Issue 4.2.3, as it sim-
ply converts NTS-w2v to NTS with zero embedding
weight. We introduce three new variants:

• NTS w2v†: NTS-w2v only affected by data
contamination (Issue 4.2.1).

• NTS w2v‡: NTS-w2v only affected by mis-
matched embeddings (Issue 4.2.2).

• NTS w2v†‡: NTS-w2v affected by data con-
tamination and mismatched embeddings.

The results are shown in Table 6. Overall, the
results are extremely close. We found that the vari-
ant with the data contaminated outperform others
while NTS-w2v, the variant without any issues per-
formed worse than the rest. We expected to observe
a noticeable performance difference for the models
affected by the mismatched embedding issue, but
the performance gap was ultimately marginal and
inconsistent. We report the validation performance
during training to analyze whether there are any dif-
ferences between these four variants. As shown in
Figure 1, the models with mismatched embeddings
had a worst start, by a perplexity gap of almost 15;
however, as training progressed, they closed the
gap and ended with perplexity differences of less
than 1.

5 Discussion

Taking all our experiments into account, we can-
not claim that the performance difference between
different variants comes from the design decisions
made during their development. The random seed
and its cascading impact on weight initialization,
data order, and sampling during text generation
could be the primary cause of the observed vari-
ations. Similar to our work, Dodge et al. (2020)

Object Measurand Eval. Script
by

Measured
Value

NTS w2v BLEU t1 87.04
NTS w2v BLEU sb2.1 87.10
NTS w2v SARI t1 29.70
NTS w2v † BLEU t1 89.43
NTS w2v † BLEU sb2.1 89.40
NTS w2v † SARI t1 29.80
NTS w2v †‡ BLEU t1 89.12
NTS w2v †‡ BLEU sb2.1 89.10
NTS w2v †‡ SARI t1 29.58
NTS w2v ‡ BLEU t1 88.01
NTS w2v ‡ BLEU sb2.1 88.00
NTS w2v ‡ SARI t1 29.18

Table 6: Results of the experiments tracking perfor-
mance impacts for identified issues, computed for this
paper using our version of the model, our output, and
the evaluation script provided by Nisioi et al. (2017)
and sacreBLEU. † indicates contaminated conditions,
and ‡ indicates mismatched conditions.

have observed that changes to random seeds can
result in substantially different results.

Perhaps our most surprising finding is that the
NTS-w2v variants affected by mismatched embed-
dings performed on par with the other variants
once training was complete. This extreme level
of resilience is, in fact, quite alarming. Nearly
all publications utilizing neural networks report
top-performing empirical results; yet, aside from
manual code review and deep analysis of the final
results, there are no other clear signs or warnings
that may suggest a bug is impacting the model. In
this case, we found that our findings from the ran-
dom seed experiments and validation performance
during the training process were the only indica-
tors that something was amiss. We recommend
that future studies include random seed analysis
demonstrating the range of the results that can be
achieved with varied seeds, although we recognize
that this search is the most expensive in terms of
computation and may not be feasible in every case.

Perhaps due to the age of this repository, getting
the project to a running state consumed the most
time. We suspect that the situation will deteriorate
as most dependencies are no longer being actively
maintained. Researchers should be hesitant with in-
troducing new dependencies into their projects. Ad-
ditionally, we believe it would be fruitful to redirect
the time and effort used for identifying and report-
ing dependencies toward exporting self-contained
environments. This is an inadequacy that we found
in nearly all of the checklists; in the case of this



project, even though we knew all the requirements,
we spent hours debugging different errors.

The reproducibility of a reproducibility study is
equally important, if not more than the reported
findings. While the contribution of the original pa-
per includes a novel idea, our goal was to provide
a final artifact having the highest possible degree
of reproducibility, and to assess the ease with and
extent to which the selected paper could be repro-
duced. It would be interesting to return and perform
a meta-analysis of this work in a few years to see
how much the claims hold over time. While it is im-
possible to stop hardware and software from chang-
ing constantly, there are steps that can be taken in
order to prolong the lifespan of a research artifact.
We have made changes and fixes publicly available
in a forked repository of the original paper.7 Addi-
tionally, we exported and released a self-contained
docker container capable of training and running
the model without any internet access (Arvan et al.,
2022). Lastly, all the trained models are available
for download.8 Despite all these attempts, it is
hard to predict future problems that might occur.
Even the docker container depends upon the host
environment (particularly, the kernel, GPU driver,
and the docker itself). We have released our full
runtime environment through Zendo (Arvan et al.,
2022).

6 Conclusions

In this paper, we reviewed the reproducibility of
Exploring Neural Text Simplification Models by
Nisioi et al. (2017). In our three step process, we
analyzed the reproducibility of the data, the soft-
ware artifacts, and the automatic evaluations. We
would have liked to analyze the reproducibility of
human evaluations given additional time. We hope
that our released artifacts offer other researchers a
head start for future reproducibility studies.
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