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SUMMARY

Recent years have witnessed substantial growth in Machine Learning (ML) and Natural
Language Processing (NLP), largely fueled by the accessibility and openness of data and
models, which is a cornerstone of Open Science. This dissertation builds on this foundation
by integrating additional principles of Open Science—transparency, scrutiny, critique, and
reproducibility—into the study of these fields.

The dissertation extensively explores and tackles the challenges in reproducibility across
both automatic and human evaluations in ML. It begins by unraveling the hidden complexities
in evaluating uncertainty, emphasizing the necessity of rigorous statistical analysis, which
include effect size and power analysis, and acknowledges the persistent risks of false
discoveries despite careful considerations. This is complemented by a comprehensive guide
to conducting and reporting uncertainties in evaluations, presenting a crucial resource for
researchers to enhance the reliability of their findings.

Further dissecting reproducibility challenges, we investigate the trends in availability
of research artifacts and examines the impact of community-driven initiatives aimed at
improving reporting practices. Furthermore, we present reproducibility assessment of eight
scientific papers. Despite certain improvements spurred by community-driven initiatives for
better reporting practices, there remain major issues that hinder reproducibility. An in-depth
case study on the reproducibility of a text simplification pipeline reveals several overlooked
reproducibility challenges such as bugs and dependency issues. Reproducibility of human
evaluations is also scrutinized through two case studies. After observing mixed results, we
identify several factors that contribute to inconsistencies in human evaluations, including
small sample sizes and dynamic conditions. Through these analyses, the dissertation
underscores the ongoing challenges in achieving reproducibility in ML and NLP, offering
insights to bolster the reliability of future research within these dynamic fields.

xii



Preface: On Open Science and Machine Learning

The United Nations Educational, Scientific and Cultural Organization (UNESCO) has
recently released its recommendation on Open Science [6]. These recommendations are
based on the consideration that science’s efficiency, effectiveness, and impact can be
improved by making scientific knowledge, data, and information openly available, accessible,
and reusable. Open science promotes the sharing of research data and materials, and the
use of open licenses for publications. It highlights the importance of increased scrutiny and
transparency in the research process. Furthermore, it underlines accessibility and inclusivity
as key principles of science.

In delineating the framework of Open Science, UNESCO’s report identifies quality and
integrity, collective benefit, equity and fairness, as well as diversity and inclusiveness as its
core values. These values serve as the foundation for the guiding principles outlined within
the report, which include:

• Transparency, scrutiny, critique, and reproducibility
• Equality of opportunities
• Responsibility, respect, and accountability
• Collaboration, participation, and inclusion
• Flexibility
• Sustainability
UNESCO’s report proposes a series of actionable steps aimed at fostering Open Science.

These measures encompass the advocacy of Open Science values, collaboration, and the
adoption of innovative technical methodologies. While the full implementation of these
actions may span years, if not decades, initiating progress begins with undertaking smaller,
tangible steps feasible in the present moment.

The pervasive culture of openness within the realm of machine learning facilitates the
development of numerous open-source models, tools, and datasets, thereby significantly
advancing research and practice in the field. This accessibility has catalyzed unprecedented
growth over the past decade, underscoring the potential impact of machine learning on
society. Given this potential, even minor adjustments in research practices hold promise for
substantial long-term benefits.

Hence, the primary objective of this dissertation is to investigate the application of
Open Science principles to research in ML and NLP. Specifically, we focus on center on
guiding tenets of Open Science: transparency, scrutiny, critique, and reproducibility. By
embracing openness and transparency, the community can aim to foster trust in scientific
inquiry and facilitate rigorous scrutiny and critique of the research process. Ultimately,
such efforts can serve as a self-correcting mechanism, engendering more dependable and
reproducible research outcomes to the collective advantage of the scientific community.

xiii



Chapter 1

Measurement and Evaluation

1.1 Introduction

Evaluation is a fundamental part of any scientific endeavor. It is the process by which the

quality, effectiveness, or value of a particular entity is assessed. In the context of ML and NLP,

evaluation is crucial for determining the performance of models and algorithms. The results

of these evaluations are often used to compare different approaches, validate hypotheses, and

make decisions about the utility of a particular method or technique.

Evaluation in ML typically involves a combination of automatic and human assessments.

Automatic evaluation employs metrics and algorithms to assess the performance of a model or

system. Human evaluation, on the other hand, involves human annotators assessing the quality

of a model’s or system’s output. Both types of evaluation have their strengths and weaknesses,

each providing valuable insights into the performance of a model or system.

At its core, evaluation is a measurement process. It involves measuring the performance

of a model or system against predefined criteria or benchmarks. Therefore, understanding

the principles and limitations of measurements is essential for conducting rigorous and reliable

evaluations.

1
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1.2 Contents of This Chapter

This chapter serves as an introduction to the dissertation. It provides an overview of the key

concepts and terms related to measurement and evaluation in ML and NLP. The chapter is

organized as follows: Section 1.3 provides background information on key terms and definitions

used throughout this dissertation. Section 1.4 discusses non-metric definitions of reproducibility

and replicability. Section 1.5 provides a brief background on deep learning and its relevance

to the reproducibility of ML research. Section 1.6 reviews related work on reproducibility and

open science in the ML and NLP communities. With this background contextualized, we then

discuss the challenges associated with reproducibility in ML research in Section 1.7 and outline

the structure of the dissertation.

1.3 Terms and Definitions

Progress has been made in standardizing research practices for fostering reproducible and open

science, but the approach to this topic has been diverse, resulting in a range of terms and

definitions being used interchangeably. Given the novelty of this field, it is crucial to establish

clear definitions to mitigate confusion and ensure effective communication. This section outlines

key terms relevant to the discourse drawn from the framework outlined by Joint Committee for

Guides in Metrology [7], JCGM [8], Plant et al. [9], and Belz et al. [10].

Consider a deep learning model that is trained to perform Named Entity Recognition (NER)

on a dataset. The model is evaluated using precision, recall, and F1-score. The following terms

are relevant to this scenario:

Measurand. The quantity or a property intended to be measured. The F1-score of the

NER model is the measurand in this case.

True Value. True value of the measurand is the value consistent with the definition of the
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measurand, but it is unknowable in practice.

Value. Value of a quantity is the magnitude of the quantity expressed as a number and a

reference to a particular unit.

Reference Value. Value used as a basis for comparison with the measured value of a

quantity.

Measurement. Measurement is the set of operations performed with the goal of determining

the value of the measurand. Measurements are imperfect due to errors or uncertainty. In the

case of the NER model, all the process and operations involved in calculating the F1-score are

considered the measurement.

Conditions of Measurement. Conditions of measurement are the set of variables that affect

the observed result. These include but are not limited to source code, runtime environment,

data, modeling algorithm, and hardware.

Error. The error of a measurement is the difference between the measured value and the

reference value of the measurand. The error is often categorized into systematic and random.

Systematic errors are consistent and predictable, while random errors are unpredictable and vary

from one measurement to another. In the context of the NER model, floating-point arithmetic

and rounding errors are examples of random errors. On the other hand, if an evaluation script

has a bug that consistently overestimates the F1-score, it is a systematic error.

Uncertainty. The uncertainty of a measurement is a parameter that characterizes the

dispersion of the measured values that could reasonably quantify the measurand. It reflects

the lack of exact knowledge of the value of the measurand. Note that uncertainty and error

are not synonyms. In the context of deep learning models, nonrepresentative sampling and

variations in repeated observations of the measurand under apparently identical conditions could

be attributed as the primary sources of uncertainty. Often a value of a measurand is determined

by a set of quantities. Repeated observations are often considered more objective or statistically
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rigorous, but this consideration fails to account for the judgment and interpretation that is

inherent in the process of measurement.

Reproducibility. Within the Vocabulary of Metrology (VIM) framework, reproducibility

is defined as measurement precision under a set of conditions. Using precision enables the

quantification of reproducibility by standard statistical measures such as the Coefficient of

Variation (CV), computed as the ratio between the standard deviation 𝜎 and mean 𝜇 of

measured scores: 𝜎
𝜇 . Specifically, when computing these statistical measures the conditions are

all the variables affecting an observed result, including but not limited to source code, runtime

environment, data, modeling algorithm, and hardware. In practice, due to the small sample

sizes of most experiments, the CV is adjusted to account for this bias as suggested by Belz [11]

and is referred to as the Unbiased Coefficient of Variation (CV*). Aside from CV, correlation

coefficients such as Pearson’s 𝑟 and Spearman’s 𝜌 can also be used to quantify reproducibility

of two sets of scores.

Replicability. Following the definition of reproducibility, we define replicability (also

sometimes referred to as repeatability) as reproducibility under the same conditions as the

original measurement.

Research Artifacts. All of the materials and conditions recorded and released by authors to

achieve reproducibility is referred to as research artifacts. These include but are not limited to

source code, data, models, and hyperparameters. Undeniably, capturing all conditions involved

in scientific experiments is an ever-evolving and challenging task. Currently, the best solution

is to provide a self-contained docker container or a virtual machine image that can be used

to reproduce the results. While self-containment might not seem necessary at first glance,

it prolongs the life time of the artifacts by reducing the chance of reliance on unavailable

dependencies or irreproducible setups. While this concept has not been fully adapted by the

machine learning community, it is considered as the best practice in other computing research
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areas such as systems and software engineering [12, 13].

1.4 Non-Metric Definitions

Although not utilized in this work, it is important to note common definitions found in the

literature. Reproducibility is often used interchangeably with correctness, but asserting so

requires judgment and interpretation [7].

Reproducibility has also been defined as the ability to achieve identical results using the

same methods and data. This definition is frequently applied in computational research, where

replicating study results depends on employing the same code and data. In this context,

reproducibility assessments often yield a binary outcome: either the results match or they do

not. However, this approach overlooks factors beyond code and data that may influence study

outcomes. For example, if reproduced F1 score of NER model is off by 1 point, it is considered

as a fail reproduction. Thus, reducing reproducibility to a binary outcome is insufficient to

capture the complexity of the reproducibility problem. A recent study [14] found that only

14.03% of 513 reproduction score pairs matched, underscoring the importance of employing

more nuanced quantitative measures to comprehend the extent of reproducibility.

Prior to the above definitions being popularized, Rougier et al. [15] defined reproducing as

running the same software on the same input data and obtaining the same results. Replicating

was then limited to running new software and achieving results judged as similar enough by

an expert in the field. The Association for Computing Machinery (ACM) [16] considers the

team and the experimental setup as contributing factors to reproducibility and replicability;

furthermore, they add another term, repeatability, to the glossary of definitions. Whitaker [17]

and Schloss [18] introduced two additional concepts known as robustness and generalizability

to cover other missing dimensions pertaining to the extent that externally-produced research

findings can be verified. Although the creation of these varied and specific definitions was
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well-intended, they attempt to cover an open-ended number of dimensions; rendering them

obsolete upon the arrival of a more comprehensive definition [10].

1.5 Deep Learning

To ensure all readers grasp the unique challenges of reproducing modern ML and NLP research,

this section offers a straightforward explanation of deep learning fundamentals, highlighting how

they differ from other scientific and computational areas.

Deep learning (or deep neural networks) is currently the most advanced method in machine

learning. It uses a system modeled with hierarchical layers of computational units known as

neurons, crucial elements of neural networks. These networks draw inspiration from the way

biological brains function.

Neural Networks. Neural networks include multiple neurons arranged into layers. Each

neuron calculates a simple math operation, usually a linear transformation, to produce an

output. Although basic, arranging multiple neurons into layers, adding non-linear functions, and

layering these groups together—known as ”hidden layers”—enhances the network’s capabilities

significantly.

Hidden Layers. Located between the input layer (where data enters) and the output layer

(where the network’s results are outputted), hidden layers enable neural networks to learn more

complex and abstract aspects of the data. These layers are called ”hidden” because they don’t

directly interact with the input or outputs.

Non-linearity. Neural networks apply non-linear functions such as Rectified Linear Unit

(ReLU) or Sigmoid to outputs. This allows the networks to pick up on complex patterns beyond

what linear operations could achieve alone.

Softmax Layer. Commonly used in the last layer of a classification network, the softmax

layer transforms the output scores or logits from the network into probabilities. This helps in
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understanding how likely each class is the correct classification based on the given inputs.

Parameters and Hyperparameters. Parameters are parts of the model adjusted during

training (like weights and biases in neurons). Hyperparameters are settings determined before

training starts and typically remain unchanged, like learning rate, number of training rounds, or

number of hidden layers.

Training with Backpropagation. Neural networks refine their accuracy through a process

called backpropagation. It calculates how much a function, measuring prediction error, changes

concerning each parameter in the network. Adjustments are then made to these parameters

through techniques like gradient descent.

Stochastic Gradient Descent (SGD) Training large models or using big datasets makes

computing gradients for the entire dataset impractical due to memory limits. SGD helps by

estimating the gradient from smaller data batches, which helps in efficiently updating parameters

to handle large data volumes.

Modern deep learning models are often complex pipelines and are reaching trillion parameter

sizes [19]. They utilize attention mechanisms [20, 21], custom learning curves and other

techniques to achieve state-of-the-art results. Each configuration or setting adds another

hyperparameter that may require tuning. Furthermore, there are at least three sources of

randomness in deep learning. First, the initialization of the parameters is random. Secondly,

there is often a random component in the optimization algorithm. For example, stochastic

gradient descent uses a random subset of the training data to calculate the gradient. Since

the order of the training data is shuffled, each run of the algorithm uses a different subset

of the training data and therefore produces different results. Lastly, Dropout [22] or random

transformation applied to the input data impacts the results.
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1.6 Related Work

Many top-tier venues have encouraged researchers to share more implementation details regarding

their work over the last few years [23, 24, 16, 25, 26]. Proposed checklists such as the ML

Reproducibility Checklist [27] and the ML Completeness Checklist [28] ask authors to provide

specifications of dependencies, training and evaluation code, pre-trained models, and proper

documentation on how to run the provided code.

Subsequently, we provide a succinct overview of the progression of efforts towards repro-

ducibility and Open Science within the ML and NLP communities. Numerous studies have

assessed the reproducibility of scientific publications. This task often involves attempting to

achieve results close enough to the ones reported in the paper with little to no reliance on

the released software artifacts, if available. Raff [29] attempts to quantify the reproducibility

ratio of 255 papers published from 1984 to 2017. He selects different thresholds for a minimal

acceptable error for algorithmic and empirical claims, ultimately reporting a 63% reproducibility

ratio. In a similar study, Wieling et al. [30] survey 395 papers presented at the Association

for Computational Linguistics (ACL) 2011 and 2016 conferences and identify whether links to

data and code were provided. Then, they attempt to reproduce the results of ten papers using

provided code and data. They ultimately find results that are close to those reported for six

papers.

Olorisade et al. [31] attempt to independently investigate the claims of six studies on a

very specific topic: text mining for citation screening. In the authors’ words, 27% of machine

learning papers lack the necessary information required for achieving reproducible results; hence,

they introduce a checklist to help mitigate this issue. The challenge of dealing with missing

information has also been brought up by Gundersen et al. [32]. Utilizing checklists and guiding

authors towards better standards during the paper submission process has become a common

practice at several venues, including NeurIPS [33], Nature [23], AAAI [24], ACM [16], and
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ACL [25]. Aside from guidelines, communities have organized reproducibility challenges [34, 35]

that attempt to promote improved reproducibility across the field.

Pineau et al. [33] provided a report after conducting the NeurIPS 2019 Reproducibility

Challenge, recapping their conclusions. They highlight that in the field of Computer Science

(CS), empirical results have been a major driving factor for recent research advancements.

However, the reproducibility of the experiments in the CS field, where experiments rely upon

hardware and software designed by humans, is even worse than that observed in other scientific

fields including biology, physics, and sociology [36]. They list a few possible roots for this

problem, especially when it comes to ML research. These include:

• Lack of access to the same training data

• Misspecification or under-specification of the model or training procedure

• Lack of availability of the code necessary to run the experiments, or errors in the available

code

• Under-specification of the metrics used to report results

• Improper use of statistics to analyze results, such as claiming significance without proper

statistical testing or using the wrong statistical test

• Selective reporting of results and ignoring the danger of overfitting

• Over-claiming of the results, by drawing conclusions that go beyond the evidence presented

(e.g., , making claims based on an insufficient number of experiments, or making claims

that are mismatched from the hypothesis)

To improve the standards of reproducibility across the community, Pineau et al. [33] present

a reproducibility program with three components: 1) a code submission policy, 2) a community-

wide reproducibility program, and 3) the inclusion of the ML Reproducibility Checklist as part
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of the paper submission process. Then they highlight three major challenges in the field of ML

compared to other disciplines. First, ML research suffers from a uniquely insufficient exploration

of variables that might affect the conclusions of a study. Moreover, ML research is often

improperly documented and reported, which could complicate reproduction attempts. Lastly,

statistical analysis has become less common in ML research, often resulting in unclear statistical

significance.

In the end, they discuss four frequent objections to reproducibility standards, including

dataset confidentiality, proprietary software, computation infrastructure, and replication of

mistakes. They mention that they have provided enough flexibility in their own guidelines to

account for these exceptions so that authors do not feel pressured when they submit their work.

1.7 Challenges in Reproducibility of Machine Learning Research

Every evaluation procedure conducted as part of ML research is a measurement reported. Each

measurement is impacted by three main factors, the conditions of measurement, uncertainty,

and error. Therefore, understanding the risks and challenges associated with reproducibility of

ML research necessitates a comprehensive understanding of the factors affecting measurements

performed as part of both automatic and human evaluations.

This dissertation is organized into three main chapters. Chapter 2 addresses uncertainty in

evaluation. Here, we explore best practices for managing uncertainty in both automatic and

human evaluations and emphasize the importance of conducting rigorous statistical analyses. We

provide a detailed discussion on often overlooked elements such as effect size and power analysis.

Moreover, through a case study, we illustrate that despite meticulous statistical analysis, the

risk of encountering false discoveries still persists. We demonstrate using current evaluation

practices when there is a marginal performance difference between two models can lead to false

discoveries. Such discoveries in turn lead to irreproducible results. The primary contribution
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of this chapter is to provide a comprehensive guide for researchers to accurately address and

report uncertainty in their evaluations.

Chapter 3 explores the challenges specific to the reproducibility of automatic evaluations. The

chapter is structured into three sections: Research Artifacts Availability, Adequacy of Existing

Research Artifacts, and In-depth Reproducibility Assessment of a Neural Text Simplification

(NTS) Pipeline.

A primary challenge in replicating ML research is the specificity of reported conditions, which

encompasses all variables influencing the observed results. These variables include, but are not

limited to, source code, runtime environment, data, modeling algorithms, and hardware. The

lack of detailed reporting on these conditions often necessitates guesswork to fill in missing

details, thereby compromising the integrity of reproduction attempts. This chapter begins with

an analysis of the availability trends of research artifacts and examines the impact of community-

driven initiatives aimed at enhancing reporting practices (Section 3.3). Our findings indicate

that such initiatives have indeed improved the availability of research artifacts, particularly in

communities with a strong focus on reproducibility.

Further, this chapter presents a reproducibility assessment of eight papers from the Empirical

Methods in Natural Language Processing (EMNLP) 2021 conference (Section 3.4). The

assessment reveals that, despite improvements, reporting practices still fall short of enabling

straightforward reproductions. We advocate for containerization as a useful technique to mitigate

these issues, offering a more controlled environment for machine learning experiments.

Lastly, the chapter conducts a detailed case study on the reproducibility of a NTS pipeline

(Section 3.5). Despite its significant citation count and adherence to recommended checklist

items, the study exposes several overlooked reproducibility challenges. We identified three major

bugs within the codebase, emphasizing the need for thorough evaluations of research artifacts.

Such discoveries underscore the importance of rigorous scrutiny in research to ensure genuine
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reproducibility.

Chapter 4 shifts focus towards the reproducibility of human evaluations, an essential

component alongside automatic evaluations in ML research. Particularly in NLP tasks, human

evaluations are often regarded as the gold standard due to their ability to capture nuances that

automated methods might miss. This chapter details our efforts to replicate human evaluation

results from two NLP-focused research papers.

Our replication attempts yielded mixed results: we successfully reproduced the human

evaluations from one paper, but encountered high variability in the results from the other. This

variability prompts a critical examination of several aspects of experimental design that may

contribute to such inconsistencies. One significant factor identified was the low statistical power

resulting from the small sample sizes used in the studies. Furthermore, we draw attention to

conditions with variable outcome. For example, the minimum number of approved tasks for

each annotator results in a different annotator pool as time progresses.

We propose that in scenarios where outcomes of conditions are likely to change, researchers

should consider equating the conditions to reflect the current state rather than strictly adhering

to those used in the original experiment. This approach increases the relevance and adaptability

of the research, potentially leading to more consistent and reproducible outcomes in human

evaluations

Finally, in Chapter 5, we close this dissertation re-iterating key insights and take-home

messages from the thesis as a whole, both for the ML and NLP community and the scientific

community at large.



Chapter 2

Uncertainty in Evaluation

2.1 Introduction

Recent strides in machine learning are driven by empirical evidence. Deep learning models’

performance is assessed across various automatic benchmarks (c.f., Wang et al. [37] or Srivastava

et al. [38]) and human evaluations; however, measures of their performance are susceptible to

uncertainties stemming from factors like random initialization, data shuffling, stochastic gradient

descent, and dropout [39, 36, 40, 41, 42, 43, 44, 45, 1, 46]. Human evaluations are also affected

by uncertainty. Participants of each evaluation are individuals that are sampled from the entire

population; therefore, one cannot expect the exact same results from repeating the evaluation

with different participants. What is worse is that human evaluations are costly to conduct,

forcing researchers to rely on small sample sizes, which in turns increases this variability.

In this chapter, we attempt to examine uncertainty inherent in the automatic and human

evaluation of machine learning models. While uncertainty cannot be eliminated, following best

practices in reporting can reduce the chances of false discoveries and improve the reliability of

research findings [9]. Adopting these practices also aligns with the broader goals of the Open

Science movement, which advocates for transparency, reproducibility, and inclusivity in scientific

13
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research to foster improved scholarship [6]. At an application level, particularly in sensitive

domains such as healthcare, following rigorous evaluation practices is essential to ensure the

safety and efficacy of machine learning models.

Our work draws inspiration from Guide to the expression of Uncertainty in Measurement

(GUM) [7]. This document is based on the recommendations of Joint Committee for Guides in

Metrology [7] and provides a comprehensive guide on how to evaluate and report uncertainty in

measurement. By using standard definitions utilized in other scientific fields, we aim to provide

a common language for researchers to discuss uncertainty in the evaluation of machine learning

learning models. Furthermore, this enables us to leverage lessons learned in other evidence-based

fields, such as medicine, physics, and chemistry, to improve the reporting of uncertainty in

machine learning model evaluation.

Additionally, we focus on best practices for data analysis and reporting in scientific research

as outlined by Plant et al. [9]. We present a unique perspective on the evaluation of machine

learning models that is often ignored in the literature. Evidence suggests that much of the ML

and NLP community is frustrated by indiscriminate reliance on benchmark values as a measure

of success [47], and our work here validates that frustration. Our contribution is threefold: (1)

we provide a comprehensive guide on how to report uncertainty in the evaluation of machine

learning models, (2) we present a case study on the automatic evaluation of deep learning

models trained with different random seeds, and (3) we discuss the implications of our findings

for the broader communities that utilize machine learning in their work. We hope that our work

serves as a reference for future researchers interested in rigorously evaluating and reporting the

results of their research on machine learning models.
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2.2 Contents of this Chapter

In this chapter, we provide a comprehensive guide on how to report uncertainty in the evaluation

of machine learning models. We begin by discussing the metrology perspective on uncertainty

in evaluation, highlighting the importance of understanding and reporting uncertainty in the

evaluation of machine learning models. We then delve into statistical significance testing,

providing background on the concepts of Type I and Type II errors, statistical power, and effect

size. We discuss the reliability of statistical inference and address issues in statistical significance

testing. We present a case study to demonstrate the application of these concepts in practice,

using two experiments that utilize deep learning models for text generation tasks. We conclude

with a discussion of our results and their implications for the broader ML community. This

chapter heavily relies upon definitions provided in the first chapter, section 1.3.

2.3 Metrology Perspective on Uncertainty in Evaluation

As previously discussed in Chapter 1 (Section 1.3), measurements are imperfect due to errors or

uncertainty. The uncertainty of a measurement is a parameter that characterizes the dispersion

of the measured values that could reasonably quantify the measurand. It reflects the lack

of exact knowledge of the value of the measurand. Note that uncertainty and error are not

synonyms. In the context of deep learning models, nonrepresentative sampling and variations in

repeated observations of the measurand under apparently identical conditions could be attributed

as the primary sources of uncertainty. Often a value of a measurand is determined by a set of

quantities. Repeated observations are often considered more objective or statistically rigorous,

but this consideration fails to account for the judgment and interpretation that is inherent in

the process of measurement. GUM highlights two primary methods for evaluating uncertainty:

Type A and Type B evaluations.
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Type A evaluation of uncertainty relies on observed frequency distributions, deriving standard

uncertainty from probability density functions based on these distributions. On the other hand,

Type B evaluation is based on assumed probability density functions derived from beliefs about

the likelihood of events occurring, often termed subjective probability. Both methods use

probability interpretations, with Type B evaluations drawing from a pool of information including

previous data, experience, manufacturer specifications, calibration certificates, and uncertainties

from reference data. Type B evaluations can be as reliable as Type A, particularly when Type A

evaluations are based on a limited number of statistically independent observations. Alas, in

the context of deep learning where underlying data distributions and model behaviors can be

complex and poorly understood, the lack of knowledge about the prior distribution limits the

applicability of Type B evaluation methods.

Given the reliance of Type A evaluation on observed data, statistical analysis becomes a

critical tool for quantifying uncertainty by extrapolating from observed frequency distributions

to evaluate the reliability of these data-based assessments. One of the simplest ways for

statistical analysis of a series of observations is to calculate the estimated standard deviation of

the measurand. The estimated standard deviation is termed the standard uncertainty of the

measurand. Statistical tests can also be utilized for this purpose. In general, GUM recommends

that it is preferable to err on the side of providing too much information rather than too little

when it comes to reporting uncertainty. We focus our investigation on the statistical analysis of

a series of observations, and extend our study beyond what is covered in GUM.
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Pred 𝐻0 Pred 𝐻𝑎

True 𝐻0
True Negative

(TN)
False Positive

(Type I Error, 𝛼)

True 𝐻𝑎
False Negative

(Type II Error, 𝛽)
True Positive

(TP)

Table 2.1: Four possible outcomes of a hypothesis test.

2.4 Statistical Significance Testing

2.4.1 Background

Null Hypothesis Significance Testing (NHST) is one of the most well-known statistical methods

for quantifying the likelihood that the observed data would occur if the null hypothesis were

true [48]. Many statistics textbooks cover this process in depth (c.f., Warne [49] or Moore et al.

[50]); briefly, the null hypothesis, 𝐻0, is a statement that there is no effect or no difference

between groups. The alternative hypothesis, 𝐻𝑎, is a statement that there is an effect or

difference between groups. The goal of NHST is to determine whether the observed data

provides enough evidence to reject the null hypothesis, and the test statistic is a value calculated

from the data that is used to make this determination. The 𝑝-value is correspondingly the

probability of obtaining a test statistic with a value that is at least as extreme as the one that

was actually observed, assuming that the null hypothesis is true.

In the realm of hypothesis testing, several key concepts play pivotal roles in understanding

the validity and reliability of statistical inferences. Type I error (false negative) refers to the

probability of incorrectly rejecting the null hypothesis when it is true, denoted as 𝛼. Type II error

(false positive) occurs when the null hypothesis is not rejected despite being false, signifying a

failure to detect a true effect or difference when one exists. Beta (𝛽) represents the probability

of committing a Type II error. If the 𝑝-value is less than 𝛼, the results are considered statistically

significant; hence, 𝛼 is also known as the significance level. Dror et al. [51] provide a useful
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primer regarding the use of these concepts specifically in NLP settings. These two types of

errors are crucial to consider in hypothesis testing as they influence the accuracy of research

conclusions and the interpretation of study outcomes [52]. Table 2.1 illustrates the four possible

outcomes of a hypothesis test.

Statistical power, often represented as 1 − 𝛽, reflects the ability of a statistical test to detect

a true effect or difference when it exists. It quantifies the likelihood of correctly rejecting the

null hypothesis, thus minimizing the risk of Type II errors. Power is influenced by various factors,

including the sample size, effect size, variability of the data, and chosen significance level (𝛼).

A larger sample size and effect size tend to increase power, as they provide greater precision

and enhance the ability to detect differences [53]. Statistical power is known to be difficult to

compute for many studies, and many studies have been found to be underpowered [54]; as in

other fields, this contributes to the reproducibility crisis [53].

Finally, effect size, another critical factor, measures the magnitude of the observed effect or

difference. A larger effect size indicates a more substantial impact of the independent variable on

the dependent variable, making it easier to detect statistically significant results [55]. However,

like other concepts, its importance has been under-recognized by researchers [56, 57].

2.4.2 Reliability of Statistical Inference

Overall, understanding the concepts defined in §2.4 is essential for researchers to design studies

with sufficient power, interpret results accurately, and draw meaningful conclusions from their

findings. However, this practice has been also under the receiving end of severe criticism [58,

55, 59]. In fact, Cohen [55] highlights several major issues with the NHST. First, the 𝑝-value is

often misinterpreted as the probability that the null hypothesis is true, when in fact it is the

probability of observing the data given that the null hypothesis is true (𝑃(𝐷|𝐻0)). Moreover,

researchers often misinterpret the complement of the 𝑝-value, 1 − 𝑝, as the probability that the
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results can be replicated. He underscores that rejecting the null hypothesis does not imply that

the original theory is correct.

Ioannidis [60] drew attention to post-study probability that a statistically significant finding

is true. Consider a simple example, given 1,000 possible hypotheses and assuming that 100

of such hypotheses are true. With 80% power, we would be able to detect 80 of the 100

true hypotheses. Simultaneously, there would be 45 false positives (5% significance level ×

900). This would result in 36% (45 / (45 + 80)) statistically significant results that are false.

This probability is referred to as false-positive report probability [60]. What is worse is that

this probability increases when the experiment is underpowered. Forstmeier et al. [61] visually

demonstrate this probability in various scenarios.

2.4.3 Addressing Issues in Statistical Significance Testing

Such reports paint a grim picture of the reliability of scientific research; nonetheless, it is

essential to keep in mind that not conducting such analyses would be objectively worse [62].

Inclusion of statistical analyses highlights attention to and care for reporting uncertainty [63],

and it enables other researchers to more confidently reproduce scientific results and assess the

validity of reported findings [10]. Ultimately, similar to Simons [64], we believe in the Trust

but Verify principle. The verification, in the form of reproductions conducted by independent

researchers, would eliminate various sources of bias and errors.

There have been numerous proposals to address issues regarding statistical significance

testing. McShane et al. [65] suggested abandoning the usage of thresholds for statistical

significance; instead they propose using 𝑝-value as a continuous variable. Wasserstein et al. [66]

highlighted six principles for proper use of 𝑝-values, and Benjamin et al. [67] suggested changing

the 𝑝-value threshold from 0.05 to 0.005. While there is no consensus on the best approach, these

proposals underscore the importance of understanding the limitations of statistical significance
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testing and the need for more nuanced and thoughtful approaches to evaluating scientific results.

Excluding statistical analyses would result in under-specified publications—this would be a

step backward for the community, and it is against the recommendation of GUM [7]. Several

other studies have also focused on utilizing the current best practices while simultaneously

highlighting the importance of meta-analyses that mitigate the issues mentioned in §2.4.2 [68,

69, 70, 71, 72, 9, 64, 73, 74]. While “correctness” and “truth” are desired outcomes of a

scientific method, they are not achievable without judgment, interpretation, and subjective

evaluation.

2.5 Case Study

In the previous section, we discussed the importance of understanding and reporting uncertainty

in the evaluation of machine learning models. We now present a case study to demonstrate the

application of these concepts in practice, using two experiments that utilize deep learning models

for text generation tasks. For each experiment, we repeat an identical training process with

different random seeds. Then, we use appropriate statistical tests to evaluate the significance of

the differences in the performance of the models trained with different random seeds. Since the

null hypothesis, 𝐻0, that the performance of the models is the same, is true,1 we expect the

statistical tests to have a high 𝑝-value. In other words, we expect the tests to fail to reject the

null hypothesis.

Earlier studies have shown that the performance variation observed due to seemingly

inconsequential factors can be statistically significant [75, 76, 77]. This is an expected outcome;

however, we are interested in the rate of such significant differences. To achieve this, we

randomly split the results into two groups and compare the performance of the models in each
1Models by definition are the same when they are trained under identical conditions, and random initialization

should not have a noticeable influence on this.
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group. We repeat this process multiple times to evaluate the reliability of the statistical tests.

Essentially, this experimental design is intended to “stress test” the significance tests.

2.5.1 Statistical Tests

We selected two non-parametric tests and one parametric test for evaluating statistical signifi-

cance. Non-parametric tests do not rely on any assumptions regarding score distribution, which

is important when evaluating deep learning models since their results distributions are hard to

define. The non-parametric tests we selected are the paired bootstrap test [78, 79, 51] and the

Almost Stochastic Order (ASO) [80, 81] test. The paired bootstrap test is a common statistical

significance test that makes little to no assumptions about the underlying distribution of the

data [82]. It is especially suitable for translation tasks, and was implemented in the sacreBLEU

Python package [83] as part of the effort to standardize the evaluation of machine translation

models. The ASO test is a more recent test designed to compare the performance of two score

distributions [81]. We discuss the use of these tests to assess significance in §2.5.3.

The selected parametric test is the two-sided t-test [84]. This test is widely used in across

the literature to compare the means of two groups. It is based on the assumption that the

data is normally distributed, which is often not the case for deep learning models. However, we

include this test to compare the results with the non-parametric tests; we expect the results of

the paired t-test to be less reliable due to the assumption of normality.

2.5.2 Selected Papers

For our case study we considered papers that: (1) were available in the ACL Anthology; (2) had

a documented track record of straightforward reproducibility, such as through their inclusion in

reproducibility studies or challenges; and (3) had anticipated resource costs within our compute

budget. Specifically regarding the last criterion, the nature of our case study required training
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models many times to build a representative empirical score distribution; thus, we needed the

central experiment in our selected papers to be repeatable enough times within a compute

budget of 12 hours of training on a single Graphics Processing Unit (GPU)2 to perform sound

statistical tests. We selected two papers that met these criteria due to our limited budget.

These papers are:

Rethinking Perturbations in Encoder-Decoders for Fast Training by Takase et al. [85].

This paper examines the problem of efficient training of sequence-to-sequence models. The

authors compare simple regularization techniques to perturbations from an efficiency perspective.

They report that word dropout and random input replacement can perform similarly to more

complex perturbation techniques while being faster.

Exploring Neural Text Simplification Models by Nisioi et al. [86]. This paper explores the

use of sequence-to-sequence models to generate simplified versions of input text. The authors

find that these models yield impressive grammar and effectively preserve the source sentence

content, overall achieving higher performance than other contemporary text simplification

approaches.

2.5.3 Experiment Design

Changing the random seed during model training results in variations in the model’s performance.

Thus, the random seed was the independent variable in our experiments; which we varied at

each run whereas all other conditions were kept the same. To report the rate of significant

differences in statistical tests when varying the random seed during model training, we followed

the experimental setup originally utilized by Colas et al. [87, 88]. We trained a model from each
2We used consumer-grade GPUs, specifically the NVIDIA RTX 2080TI and RTX Titan.
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# Reference Task Reps.

1 Takase et al. [85]
Machine
Translation
(MT)

77

2 Nisioi et al. [86] Simplification 39

Table 2.2: Reproduced papers. The number of reproductions (Reps.) is the number of random
seeds that were used to train the model in separate training runs.

selected paper 𝑛 times using different random seeds, yielding 𝑛 unique results for each paper.3

Then, we used the selected statistical tests to compare the results of the same model across

different seeds, and calculated the percentage of tests that rejected the null hypothesis.

The paired bootstrap test required selection of a pair of models to compare among all (𝑛
2)

pairs of trained models. We repeated this process for each of the (𝑛
2) pairs to calculate the

rate of significant differences. The t-test and ASO test accept two sets of results as input, and

we repeated the process of selecting two sets of results from the 𝑛 results for each paper. We

calculated the rate of significant differences for each test. In contrast to the paired bootstrap

test, the number of potential splits is far greater: (𝑛
𝑛
2
). We used a constant 10,000 random

splits to calculate the rate of significant differences for these tests. We set the significance level

𝛼 to 0.05 for all tests, to accept or reject the following null hypothesis:

H0: The performance of set A is the same as the performance of set B.

For the selected papers, we re-ran experiments using the authors’ code and data to ensure

consistency with the original experimental setup and methods. We summarize the experimental

tasks and number of training runs included in our study in Table 2.2. We repeated Takase

et al. [85]’s work 77 times and Nisioi et al. [86]’s work 39 times, respectively. We carefully

followed the instructions in the papers and supplementary materials to set up the required
3We set 𝑛 for each paper to the maximum number of experimental runs we could afford to allocate within

our budget.
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environment, including using necessary software dependencies, hardware configurations, and

data preprocessing steps.

Performing multiple statistical tests on the same data increases the risk of false positives;

thus, although our process can estimate the rate of false positives it should not be used to draw

other conclusions. Some techniques can be used to control the False Discovery Rate (FDR)

under arbitrary dependence assumptions, such as the Benjamini-Yekutieli method [89], but these

techniques directly limit the rate of false positives to a predefined desired level across many tests.

Since our goal is to provide an estimation of the chance of falsely rejecting the null hypothesis

in a single test, we do not apply any FDR control techniques.

2.6 Results

2.6.1 Statistical Power Analysis

Performing a power analysis for the t-test is straightforward. We set 𝛼 = 0.05 and power to

0.8. We followed Cohen [90] to define the effect sizes as follows: small effect=0.2, medium

effect=0.5, large effect=0.8, and very large effect=1.2. We calculated the number of samples

required to achieve these effect sizes and found that we need 12, 26, 64, and 394 samples for

achieving effect size of 1.2, 0.8, 0.5, and 0.2, respectively (smaller effect sizes means that the

groups are more similar, therefore, more samples are needed to detect a difference). Note that

the t-test is not the best test for our case, as the data is not normally distributed, but we

included this test to compare the results with the non-parametric tests.

2.6.2 Statistical Significance Testing

We summarize our results for the two selected papers in Table 2.3 using the standard performance

metric (BLEU score) for text generation reported in those papers, and provide additional details
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Takase et al.
[85]

Nisioi et al.
[86]

Reported 36.22a 84.51
Mean 36.18 87.90
Median 36.19 88.11
STD 0.20 1.16
Min 34.76 84.47
Max 36.46 89.59

Table 2.3: Summary of BLEU scores for each paper. The superscript a indicates the average of
three models trained using different seeds by the original authors.

for each reproduced paper in the subsections below.

Paper 1. Takase et al. [85] evaluated their work on several datasets. We limit our experiments

to those with the IWSLT 2014 German-English training set,4 which contains 160k sentence pairs.

This dataset is considered low resource and enables training smaller models. In Figure 2.2, we

plot the distribution of results generated across all 77 of our experimental runs of their machine

translation model using unique random seeds. The plot shows that the model’s performance

is distributed across a wide range of values. With BLEU=36.18 and BLEU=36.19 for mean

and median, respectively, our average results are close to BLEU=36.22, the value originally

reported by the authors. However, the best and especially the worst results show the extent of

the variation in the model’s performance.

Next, we ran the selected statistical tests to evaluate the significance using a set of 77

sample results. We calculated (77
2 ) = 2926 𝑝-values using the paired bootstrap test. We

observed 𝑝 < 0.05 in 22% (655 out of 2926) of cases. For ASO, there were 1.36e+22 possible

combinations (all possible combinations of 385 out of 77 results), but as mentioned previously

we randomly sampled results from 10,000 combinations.6 We observed 𝜖 < 0.5 in 24% (2,459
4https://sites.google.com/site/iwsltevaluation2014/data-provided
50.5 × 77, rounded down to the nearest whole number.
6It was computationally intractable to perform the test on all combinations.

https://sites.google.com/site/iwsltevaluation2014/data-provided
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out of 10,000) of cases using ASO.7 A more conservative threshold of 𝜖 < 0.2 yielded 3% (345

out of 10,000).

Lastly, for the t-test we observed 𝑝 < 0.05 in 4.61% (461 out of 10,000) of cases. This is

surprising, as the t-test is considered to be less reliable when the data is not normally distributed.

All 461 cases had an effect size larger than 0.5 (medium effect size). Of these, 179 of the 461

cases had an effect size larger than 0.8 (large effect size), and 0 had an effect size greater than

1.2 (very large effect size). The ratio of false positives of the t-test falls within the expected

range of 5% for 𝛼 = 0.05.

Paper 2. Nisioi et al. [86] evaluated their work on English Wikipedia8 and Simple English

Wikipedia [91]. They proposed two model variants, one of which used pre-trained word vectors

and the other of which did not. We used the latter and repeated the authors’ experiment 39

times; Figure 2.1 shows the violin plot of our results. Similarly to Takase et al. [85], the authors

used BLEU to evaluate their model output. Surprisingly, our results (see Table 2.3) suggest

that their reported BLEU=84.51 is closer to the minimum than the mean and median, which

are BLEU=87.90 and BLEU=88.11, respectively. Furthermore, the model with the best BLEU

score (BLEU=89.59) outperforms all models in the original paper. A finding that does not align

with the original work is that the model with pre-trained word vectors outperforms the rest.

Following the same procedure as for Paper 1, we calculate (39
2 ) = 741 𝑝-values for the paired

bootstrap test. We observe 𝑝 < 0.05 in 29% (216 out of 741) of cases. For our sample of

10,000 sets of results for ASO, we observe 𝜖 < 0.5 in 17% (1,760 out of 10,000) of cases. On

the other hand, with 𝜖 < 0.2, we observe 4% (438 out of 10,000) of cases with a significant

difference. Lastly, for the t-test, only 2.16% (216 out of 10,000) of cases have 𝑝 < 0.05. All

216 of these cases had at least a small effect size (greater than 0.2). Of these, 82 of the 216
7ASO returns 𝜖, a confidence score, rather than the traditional 𝑝; both can reject 𝐻0 when compared to a

threshold.
8https://en.wikipedia.org/wiki/Main_Page

https://en.wikipedia.org/wiki/Main_Page
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Figure 2.1: Histogram of BLEU scores for Nisioi et al. [86]. The x-axis represents the BLEU
score, and the y-axis represents the number of occurrences. The sample size is 39.
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Figure 2.2: Histogram of BLEU scores for Takase et al. [85]. The x-axis represents the BLEU
score, and the y-axis represents the number of occurrences. The sample size is 77.

cases had an effect size greater than 0.5 (medium effect size), and 0 had an effect size greater

than 0.8 (large effect size). Once again, the ratio of false positives resulting from the t-test falls

within the expected range of 5% for 𝛼 = 0.05.
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2.7 Discussion

Our results demonstrate a large variation in the performance of models trained with different

random seeds, for both papers. This variation is reflected in the wide range of BLEU scores

obtained across the different runs, rendering evaluation of the models challenging [82, 51, 54].

We believe that without the additional statistical analysis conducted, one might easily draw

incorrect conclusions about the performance of the models.

This empirical observation has important consequences, especially when considering all the

hard work that researchers dedicate to designing models that beat the state-of-the-art in a

specific task. Given the wide range of scores, it is hard to build confidence that a particular

change to an existing model results in any performance improvement observed, specially since

statistical significance tests are rarely included in the analysis. It is possible that trivial changes

result in better performance, and that meaningful changes result in lower performance, all due

to sheer luck.

We found that for a very large effect size, the t-test requires 8 samples to achieve 80%

power. This number may be an underestimate, since the data is not necessarily normally

distributed. Regardless, we recommend future studies to at least use 8 unique random seeds

when reporting the performance of their models. Ideally, the desired effect size is determined

before the experiment is conducted, and the number of samples is calculated accordingly. Only

then can researchers confidently claim that the observed differences are not due to random

chance.

Numerous publications report achieving marginal improvements in performance over the

state-of-the-art. Marginal improvements most likely result in a small effect size, which sets the

sample size required to achieve 80% power to 199. Currently, even at best scenario, researchers

collect 5 to 10 samples, which is far from the required number of samples to achieve 80% power.

Knowingly or unknowingly, researchers are likely to report false positives, which in turn result in
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failed reproductions in the future.

Out of the three tests, the t-test was the only one that had a false positive rate within

the expected range of 5%. We ground this finding in the fact that the data is not normally

distributed. Ultimately, due to ease of usage of statistical tests in publicly available libraries in

python [92, 93, 94, 95], we encourage researchers to utilize all three tests highlighted here to

evaluate the significance of their results.

Ultimately, uncertainty engraved in deep learning models is a reality that we must recognize

and address to the best of our abilities. This stochasticity poses a risk to the reliability of

model evaluation in our field. We hope that our work raises awareness of this and encourages

researchers to conduct more rigorous evaluations of their models. Reviewers and community

organizers should also take an active role in ensuring scientific publications are not underspecified.

Given the limitations of significance testing, we do not recommend gatekeeping publications to

only those reporting results that pass significance tests. Rather, we recommend for the inclusion

of broad statistical significance analyses in those publications. We underline that false positives

can and do occur. Such findings should be investigated to determine the root cause of the false

positives. Particularly, if false positives are attributed to the experimental design, future studies

can take steps to mitigate the issue.

Our work was limited in several ways. First, the claims that we make are purposely based

on experiments that do not leverage pre-trained models. If additional experiments in the future

reveal that the variance in results across training runs with different random seeds is not as

strong with models utilizing pre-trained language models, then our claims would generalize less

broadly. There are many advantages to reusing pre-trained models; one of them is to vastly

minimize the impact of weight initialization since a portion of the model is shared everywhere.

In turn, this could reduce the variability as a result of random seeds. We hope to investigate

this in a future study.
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Furthermore, while there is little evidence to suggest that risks pertaining to variation from

random seeds are task-specific, we do only explore two tasks in this work, covering machine

translation and text simplification. Thus, the number of domains explored in this chapter is

limited. Addressing this is complicated due to widespread issues affecting the reproducibility

of results. Although we originally hoped to include more tasks in this study, we ran into

reproducibility issues of our own that prohibited this.

Finally, the models included in our study were evaluated on relatively small datasets compared

to some datasets that are more commonly used. Our selection of models for inclusion in this

study was guided by careful resource considerations, since a necessary component of our work

was the repeated retraining of these models. Moreover, reproducing work in the first place

often requires a lot of debugging and testing in itself. Rigorous evaluation often necessitates

down-scaling since it requires many times more computation, and our study exemplified although

was not unique in this. We leave it to others to scale this study as yet another future direction,

given access to the necessary compute resources.

2.8 Conclusions

In this work, we have shown that different samples of results from the same model, varying only

the random seed, can exhibit so much variability that the samples could be considered drawn

from two different models. We also demonstrated that additional statistical analysis in the form

of significance testing can be employed to evaluate the impact of uncertainty in deep learning

models, and that some tests may do better than others at estimating the false positive rate.

Surprisingly, in our experiments the t-test was the only significance test for which false positives

fell within the anticipated range. Using a more conservative threshold for the ASO test also

decreased the false positive rate to an acceptable level.

We underscore that this added scrutiny is beneficial to the community, and results in stronger,
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more reliable advances. While the risk of false discoveries cannot be eliminated, providing

detailed statistical analyses implies a level of consideration for the uncertainty in the results.

Furthermore, it enables future researchers to more easily investigate the findings and build

upon them. Without a doubt, early detection of any false discovery would be beneficial to the

community.

We encourage community organizers and reviewers to further emphasize and demand

appropriate significance testing with adequate sample sizes. There does not seem to be a way to

“fix” the stochasticity of deep learning models. Eliminating or optimizing the random seed are

not viable options, as such actions cannot be transferred to other tasks or models. Instead, the

only way to reliably support claims of performance is through inclusion of extensive statistical

analyses.

This chapter provided a guide on how to handle uncertainty in evaluations. However, aside

from uncertainty, conditions also impact the outcomes of measurements. The next chapter

more fully examines these conditions in the context of automated evaluation.



Chapter 3

Automatic Evaluation Reproducibility1

3.1 Introduction

The reproducibility of research findings is a cornerstone of scientific integrity, yet in the realm

of computational linguistics, challenges persist that can obstruct this fundamental principle.

There have been several initiatives to address these challenges, including the introduction

of reproducibility checklists and guidelines by major conferences in the field. However, the

effectiveness of these measures in promoting reproducibility remains an open question.

This chapter investigates the availability of research artifacts in papers from key conferences

such as the ACL, Neural Information Processing Systems (NeurIPS), and Interspeech, utilizing

data from respective repositories such as the ACL Anthology. We aim to evaluate whether a

conference’s focus on reproducibility correlates with enhanced accessibility to research artifacts,

reflecting on past and present practices. Moreover, issues such as “code dumps,” characterized by

the release of source code without adequate guidance or documentation, contribute significantly

to reproducibility problems. We hypothesize that these issues, while prevalent, are more

effectively addressed in conferences that demand for higher reproducibility standards.
1Parts of this chapter were previously published in Arvan et al. [3, 1, 2]

32
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Through a close examination, including attempting to reproduce findings from select EMNLP

2021 papers and reviewing a well-documented study by Nisioi et al. [86], this research aims to

not only highlight existing gaps but also to suggest ways in which the community could fortify

its commitment to open and reproducible science. This analysis is particularly pertinent in

light of recent discussions within the scientific community regarding the reliability of published

research and aims to foster a deeper understanding that could shape future conference policies

and practices.

3.2 Contents of this Chapter

This chapter is devoted to exploring the nuanced topic of reproducibility within computational

linguistics and related scientific disciplines. Recognizing reproducibility as a foundation of

scientific integrity, our analysis aims to provide a multi-faceted examination of how reproducibility

is currently addressed in various academic forums. Below are the main contents and contributions

of this chapter:

1. Trends in Research Artifact Availability: Initially, we conduct a comprehensive analysis

of the availability of research artifacts, including data and source code, from papers pub-

lished at top-tier conferences such as those hosted by the ACL, NeurIPS, and Interspeech.

The purpose is to identify trends in artifact sharing and assess reproducibility norms across

these forums. We compare these practices to understand variances among conferences,

investigating whether stringent reproducibility guidelines correlate with better research

artifact dissemination.

2. Adequacy of Existing Research Artifacts: Next, we address the prevalent issue where the

availability of source code does not necessarily equate to reproducibility. By attempting to

replicate the results of selected papers from the 2021 Conference on EMNLP, we highlight
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the common barriers encountered, such as ”code dumps” and missing dependencies. These

challenges illustrate why merely having access to source code often falls short of ensuring

that a study can be effectively reproduced.

3. Detailed Case Study Evaluation: Lastly, the chapter includes an in-depth evaluation

of a specific study from Nisioi et al. [86], chosen due to its exemplary status in terms of

reproducibility. We dissect how this particular paper’s materials aid in replication efforts,

using it as a model to understand what constitutes effective sharing and documentation of

research artifacts. This case study helps underline the practices that enhance reproducibility

and can serve as a guide for future scientific publications.

By examining these aspects, this chapter contributes to the ongoing discussion on how to

improve scientific reproducibility. Each section builds upon the lessons learned from current

practices, aiming to suggest actionable improvements for future research endeavors. Contents

of this chapter are based on our publications [3, 1, 2].

3.3 Trends in Artifact Availability

3.3.1 Method

To analyze trends in artifact availability, we select five major NLP conferences (ACL, EMNLP,

Language Resources and Evaluation Conference (LREC), North American Chapter of the Associ-

ation for Computational Linguistics (NAACL), and International Conference on Computational

Linguistics (COLING)), and scrape the ACL Anthology to obtain data associated with all papers

published at those venues. The aclanthology.org portal contains “code” and “data” fields

that indicate whether the paper contains a link to the source code and the data. We use these

fields to determine the availability of research artifacts for these conferences.

aclanthology.org
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We also download papers from Interspeech and NeurIPS for additional comparison. The

papers published in Interspeech are available through the isca-speech.org website. This

portal provides basic information regarding speech processing papers listed in the conference

proceedings, as well as the papers themselves. At the time of writing, the website provides

information about 35,050 papers published at 344 conferences. While the ISCA portal is useful

for researchers who are searching for papers, it does not provide any information about the

availability of research artifacts; hence, retrieving this information originally required us to

manually search each paper. To expedite and streamline this process, we wrote a python script

to download the PDF files. Then, we used the PyPDF22 library to extract the text from the

PDFs. Following this, we performed a simple keyword search (“github.com”) to determine

whether the paper contained any information regarding released software artifacts. GitHub is

by and large the most popular website for hosting open source code, making its presence in

a paper a reasonable first clue towards source code availability. The references section of the

paper was excluded from the search to reduce false positives.

We attempted to follow a similar process to that used for the ACL Anthology for papers

published at NeurIPS. This conference utilizes the openreview.net website to host their

proceedings. The website provides an API to download accepted papers published at conferences.

NeurIPS also provides a paper portal3 that provides a similar experience to the ACL Anthology.

Once this data is collected, we analyze the trends in artifact availability for each conference in

terms of ratio and number of papers with research artifacts.

Our research on the availability of artifacts in academic papers has several limitations,

primarily due to reliance on basic keyword searches across various databases, including Interspeech

and NeurIPS, which could generate false positives or negatives.
2https://pypi.org/project/PyPDF2
3https://papers.nips.cc

isca-speech.org
openreview.net
https://pypi.org/project/PyPDF2
https://papers.nips.cc
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3.3.2 Results

We present our primary results in Figure 3.1. The figure shows the percentage of papers with

research artifacts for each conference. On a positive note, all of the conferences have an upward

trend for research artifact submission. In the case of NeurIPS, ACL, EMNLP, and NAACL, the

percentage has surpassed 50%. The gap between research artifact availability in NeurIPS and

Interspeech is nearly 40%.

Out of these conferences, LREC [96], COLING [97], and Interspeech have not yet formally

emphasized reproducibility in their call for papers. On the other hand, besides NeurIPS which has

been the frontrunner, EMNLP [98], ACL [99], and NAACL [100] highlight several reproducibility

guidelines for authors to consider during the submission process. Figure 3.1 illustrates percentage

of papers with research artifacts at the selected conferences over the years.

We demonstrate the total number of papers accepted at each conference in Figure 3.2.

Despite having the most papers accepted, NeurIPS is the frontrunner in terms of research

artifact availability. The rest of the conferences are relatively close in terms of total number of

papers accepted. We have included this figure to provide context for the percentage of papers

with research artifacts.

3.3.3 Discussion

Our results suggests that the percentage of papers with research artifacts in COLING, LREC,

and Interspeech was lower than that observed in other conferences. We believe this could create

unnecessary barriers for future researchers to adapt and build upon the work presented at these

conferences. This problem is not easily solved, as it requires a change in established research

practices and acceptance from the community. Certainly there are cases that cannot share

their work due to privacy or other concerns. However, we believe that the community and its

leadership should strive to make research artifacts available and promote the value of openness.
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Figure 3.1: Percentage of papers with research artifacts at the selected conferences over the
years.
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Figure 3.2: Total number of papers accepted at the selected conferences over the years.

3.4 Eight Paper Case Study

3.4.1 Method

Out of over 1300 accepted papers at EMNLP 2021, 723 had URLs to a repository containing

the code required to run their experiments. We randomly select eight papers from the 2021

Conference on Empirical Methods in Natural Language Processing [101]. We attempt to perform

necessary steps to measure the performance of the models reported in these papers. Then,
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we compare the results to those reported in the papers. We use the CV* metric to quantify

the reproducibility of the results. CV* was discussed earlier in Section 1.3. We also provide

a checklist of the availability of instructions, dependencies, and scripts used for training and

evaluation. We summarize the results of our reproducibility assessments in Table 3.1. Our

selected papers are provided below. We refer to each paper by its associated number in this list.

1. A Massively Multilingual Analysis of Cross-linguality in Shared Embedding Space [102]

2. Automatically Exposing Problems with Neural Dialog Models [103]

3. Frustratingly Simple but Surprisingly Strong: Using Language-Independent Features for

Zero-shot Cross-lingual Semantic Parsing [104]

4. Weakly-supervised Text Classification Based on Keyword Graph [105]

5. ReasonBERT: Pre-trained to Reason with Distant Supervision [106]

6. StreamHover: Livestream Transcript Summarization and Annotation [107]

7. ValNorm Quantifies Semantics to Reveal Consistent Valence Biases Across Languages and

Over Centuries [108]

8. Measuring Association Between Labels and Free-Text Rationales [109]

While random selection of the papers avoids inserting selection bias into our findings, it may

increase the difficulty of achieving reproducibility due to lower familiarity with certain concepts.

We allotted fixed, limited time and computation resources for each paper, and report whether we

were able to reproduce the findings of the paper within our time and resource budget. Certain

works may require more time and resources than others, and we acknowledge that our results

may not be comprehensive. The next case study presented in this chapter ( Section 3.5) provides

in-depth analysis of a single paper, which provides a contrast from the case study presented

here.
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For each selected paper, we attempted to follow the instructions provided by the authors

to achieve the reported results. In case of errors or missing instructions, we reached out to

the authors for clarification. We also reported the issues we faced during the reproducibility

process. We provide a checklist of the availability of instructions, dependencies, and scripts

used for training and evaluation. We summarize the results of our reproducibility assessments in

Table 3.1.

Although we quantify reproducibility using CV*, we consider an attempt successful if we

can run the code and record any results. This is in parts due to the limited time, resources, and

the complexity of every paper. We also provide a detailed account of the reproducibility process

for each paper in Section 3.4.2.

We understand that this process is not comprehensive; regardless, we believe it provides

a good indicator for adequacy of released research artifacts. We also acknowledge that the

reproducibility of results is not the only measure of the quality of a scientific publication.

3.4.2 Results

Table 3.1 provides an overview of the availability of instructions, dependency specifications, and

scripts used for training and evaluation. It also indicates whether we were able to reproduce the

results for each paper. This checklist highlights the availability of materials that ultimately aid

the reproducibility process. Given that one of the biggest reproducibility hurdles is getting the

provided code to a running state, we expected this table to provide an estimate of the difficulty

in reproducing the results of each selected paper. We also document the reproduction process

for each paper below.

Paper 1. The released source code for Paper 1 [102] contains a list of dependencies and full

information on how to run the scripts provided. We found several syntax errors within the code

released; fixing these errors took little effort. Unfortunately, the released code then terminated
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Title Instructions Dependencies Scripts Reproducibility

Paper 1 [102] Yes Yes Yes No
Paper 2 [103] No No No No
Paper 3 [104] Yes Yes Yes No
Paper 4 [105] Yes Yes Yes No
Paper 5 [106] Yes Yes Yes Yes
Paper 6 [107] Yes Yes Yes No
Paper 7 [108] No No No No
Paper 8 [109] Yes Yes Yes Yes

Table 3.1: Overall results of the reproducibility attempts discussed in this work.

with a runtime error after executing for approximately one hour. We reported this issue to the

authors through GitHub’s tracking issue,4 and followed up via email to the first author. While

the authors responded to the follow-up email, they were unable to provide a solution to the

issue. Thus, our efforts failed to get the released source code to a running state.

Paper 2. The source code released for Paper 2 [103] contains no information or documen-

tation describing how to achieve the reported results. We were unable to understand which

files were used to achieve the results reported in the paper. Communications with the authors

through GitHub5 and email were unsuccessful. We were unable to run the code provided for

this paper.

Paper 3. In order to reproduce the results presented in Paper3 [104], it is necessary to access

specific pre-trained embeddings. Unfortunately, these embeddings are no longer accessible,

as indicated by the unavailable link.6 Concerns also arise regarding the availability of the

preprocessing scripts for the dataset, which appear to be similarly inaccessible. Efforts to resolve

these issues included direct communication with the authors through a GitHub issue7 and a

follow-up email to the first author. However, these attempts have not elicited any response.
4https://github.com/AlexJonesNLP/XLAnalysis5K/issues/1
5https://github.com/DianDYu/trigger/issues/1
6http://www.let.rug.nl/rikvannoord/DRS/embeddings/
7https://github.com/SALT-NLP/Multilingual-DRS-Semantic-Parsing/issues/1

https://github.com/AlexJonesNLP/XLAnalysis5K/issues/1
https://github.com/DianDYu/trigger/issues/1
http://www.let.rug.nl/rikvannoord/DRS/embeddings/
https://github.com/SALT-NLP/Multilingual-DRS-Semantic-Parsing/issues/1
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Paper 4. According to the authors of Paper 4 [105], their released source code requires

multiple GPUs, and it is not possible to run it on a single GPU. This requirement raises the entry

barrier for assessing the reproducibility of this work. Fortunately, we had access to a multi-GPU

workstation, so we were able to continue with our reproducibility analysis only to find two errors.

First, there was a missing dependency, which was straightforward to fix. Second, we ran into a

mismatched device error during the source code runtime, which originates from mishandling the

device (Central Processing Unit (CPU) or GPU) used for the data or the model. Regardless

of what device is used, if there is an operation between two tensors, they have to be on the

same device. We reported this issue through GitHub.8 Although we did not receive a response

prior to the initial submission, we did hear back later after we followed up with the first author

via email. The authors responded with a solution. Other users reported experiencing the same

issue and that the solution appears to be working. This case offers a good example of effective

communication and collaboration to improve the reproducibility of the publication.

Paper 5. We were able to run the source code released for Paper 5 [106] without any

issues. The source code included quick experiments with smaller data samples, which made

the reproducibility assessment of this work easy and straightforward. Additionally, the authors

provided clear and concise instructions on how to achieve the results reported in the paper.

The training took minutes for each model, which would have made debugging easier if we had

encountered issues.

Since we were able to successfully reproduce this paper, we measured the CV* for the results

of several models on the SQuAD dataset reported in Table 4 of Paper 5 [106]. We present the

results in the top portion of Table 3.2. We note that the reported results are from an average of

five runs; however, to the best of our knowledge, the authors have not released the full results.

We observe CV* values ranging from 17.04 to 139.92. This is less than ideal, but it can be
8https://github.com/zhanglu-cst/ClassKG/issues/5

https://github.com/zhanglu-cst/ClassKG/issues/5
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justified by the small size of the dataset and the random seed affecting the data order. We

believe that running more experiments to increase the sample size would yield lower CV*. We

mark this reproducibility attempt as successful.

Paper Model Reported Ours Mean Unbiased St. Dev. CV* ↓

5

BERT 9.9 5.78 7.84 3.64 52.25
ReasonBERTR 41.3 34.79 38.04 5.76 17.04
ReasonBERTB 33.2 5.81 19.50 24.26 139.92
SSPT 10.8 4.92 7.86 5.20 74.51
SpanBERT 15.7 10.07 12.88 4.98 43.53

8 E-SNLI 90.52 87.72 89.12 2.48 3.13

Table 3.2: Partial reproducibility results for Papers 5 [106, Table 4] and 8 [109, Table 3].
Performance for Paper 5 [106] was measured as SQuAD dataset F1 using a sample size of 16,
and CV* scores are averaged across five runs. Performance for Paper 8 [109] was measured as
accuracy of the trained self-rationalizing model (I→OR). Lower CV* is better.

Paper 6. The source code for Paper 6 [107] contains a full list of dependencies and

instructions on how to run the code. As part of their evaluation, the source code used pyrouge

to calculate the ROUGE metric [110]. Even though we were able to train a model according

to the instructions, the final step of evaluation failed with a runtime error due to the missing

installation of ROUGE. Following instructions provided by the pyrouge Python release package

was not possible due to an unavailable (dead) URL that was supposed to explain how to

install ROUGE.9 Even after finding the instructions included in the main GitHub repository for

pyrouge, we were not able to get it to a working state. We suspect this package is no longer

being maintained as it had not been updated for more than three years at the time of writing.

Furthermore, this issue was already reported by others in April 2021.10 We contacted the authors

via email offering our collaboration to migrate the source code to use SacreROUGE [111] but

did not receive a response.
9https://pypi.org/project/pyrouge/

10https://github.com/bheinzerling/pyrouge/issues/38

https://pypi.org/project/pyrouge/
https://github.com/bheinzerling/pyrouge/issues/38
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Paper 7. The source code released with Paper 7 [108] is a collection of functions within

a Python script. We were unable to determine which function(s) should be run for which

experiment by inspecting the script. Without having access to the specific scripts used to run

the experiments reported in the paper (or more documentation), we could not continue our

work. We reached out to the authors by submitting an issue over GitHub,11 and sent a follow-up

email to the first author. We did not receive a response.

Paper 8. Paper 8 [109] raised our concerns about the hardware requirements for training

and evaluation, as it uses T5 [112]—one of the largest available pre-trained Transformer models.

Fortunately, the paper used T5 base, one of the smaller variants, and we were able to train and

evaluate this model using a GPU with 24GB memory available. Unlike Paper 5 [106], this work

did not contain a set of experiments using only a portion of the dataset. Given that training for

200 epochs (the authors’ instructions) was beyond our allotted computing budget, we resorted

to reducing the number of training epochs to one. This reduced the training time to less than

an hour. Despite this reduction, our results were still close to those originally reported. We

present these results in the bottom portion of Table 3.2.

3.4.3 Discussion

The results of our 8-paper reproduction case study show that code availability is not enough for

reproducing the results present in published literature. Out of eight papers with released source

code, we were only able to run two without issues. Furthermore, even though we made our best

attempts to fix the issues with the others (including contacting the original authors), we were

not successful in doing so.

To determine what new guidelines can be introduced to improve the state of reproducibility

in the field, we first categorize the issues we found and check whether the existing guidelines
11https://github.com/autumntoney/ValNorm/issues/1

https://github.com/autumntoney/ValNorm/issues/1


45

cover them. The primary problem of Paper 2 [103] and Paper 7 [108] was missing files, scripts,

and instructions used to generate the reported results. Current reproducibility guidelines already

address this problem. The ML Code Completeness checklist [28] highlights the importance

of dependencies, code used for training and evaluation, and a README file accompanied by

the instructions. We found that papers present training and evaluation scripts in many unique

ways. This hinders the understandability of the code (e.g., which script achieves which result,

or what is the correct order of operations). We believe this problem could be addressed by

recommending that authors include explicit scripts to generate each result reported in the paper.

Dependency on external resources was the main issue with Paper 3 [104], Paper 4 [105], and

Paper 6 [107]. Paper 3 [104] used a pre-trained embedding file that was no longer available for

download. Paper 4 [105] and Paper 6 [107] had missing and broken dependencies, respectively.

Dependencies introduce variability over time, and may become broken as packages cease to be

maintained. Simply listing dependencies, even with exact versions (which may become broken

or inaccessible in the future), is not adequate to ensure long term reproducibility. Instead,

self-contained artifacts such as Docker containers and Virtual Machine (VM) images can recreate

an executing environment with high fidelity without relying on external resources (e.g., files or

URLs). The use of virtual environments is already mentioned in the ML Code Completeness

Checklist [28]. The NAACL reproducibility track [26] also focuses on model verification using

Docker containers, however, the containers are not publicly available.

Outside of NLP, the NeurIPS Code and Data Submission Guidelines [113] suggest the

submitted codes should be self-contained and executable. Regardless, we believe reproducibility

standards need to prioritize releasing self-contained environments. This shift would reduce the

workload near submission deadlines while helping authors to document and record their work

throughout development.

Except for Paper 5 [106] and Paper 8 [109], we encountered issues requiring the authors’
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assistance (e.g., syntax and runtime errors). Aside from one case, our attempts to communicate

with the authors were not successful. We understand that authors may not be available

after their work is published, and that there are no guidelines regarding support of published

research. Instead, this further strengthens our recommendation that future conferences require

self-contained artifacts. We also recommend that they provide a venue to evaluate such artifacts

at the time of publication, as performed in other fields of CS [12, 114, 115, 13].

On the positive side, Paper 5 [106] eased our reproducibility attempt through the inclusion

of small-scale experiments. Often, the resources available for assessing reproducibility are limited

compared to the original study. Therefore, unique hardware requirements and compute-intensive

methods raise the barrier for reproducibility assessments. We recommend including limited

experiments that are able to run on commodity hardware and with modest time requirements.

Given the empirical results provided in the previous section, we believe the following guidelines

would help future reproducibility:

1. Include small scale experiments.

2. Include and document explicit scripts to generate each result in the paper.

3. Release executable self-contained artifacts.

4. Require (and evaluate) artifacts, not source code.

3.5 Case Study: Neural Text Simplification

While a high-level and fast reproducibility assessment provides good overview of the state of

reproducibility in the field, a more detailed case study can provide a deeper understanding of the

challenges faced by researchers in reproducing the results of a paper. In this section, we present

a detailed case study of the work of Nisioi et al. [86] on the task of text simplification. We

selected this work because it is one of the first to explore neural sequence to sequence models
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for automatic text simplification. We aim to reproduce the results of this work and evaluate the

reproducibility of the released artifacts. We also provide a detailed account of the reproducibility

process for this paper.

Nisioi et al. [86]’s work explores the task of neural text simplification. In this task, the

goal is to transform a given text into a simpler version while retaining its meaning. What

constitutes simplicity itself raises complicated questions since simplicity could be observed in

the form of lexical simplification, content reduction, and grammatical or structural modification.

Data-driven techniques attempt to achieve simplicity through automated metrics and human

evaluation. The task holds many parallels with Machine Translation (MT), and this framing

allows models studied in the context of neural MT (e.g., , neural sequence to sequence models)

to be adapted and deployed for neural text simplification.

Nisioi et al. [86] is one of the first investigations of neural sequence to sequence models

for automatic text simplification. In particular, they use Long Short-Term Memory (LSTM)

networks [116, 117] in an encoder-decoder architecture that has demonstrated success in similar

sequence to sequence problems [118]. The encoder LSTM computes a representation for each

source sentence, and the decoder LSTM generates an output given the encoded representation

and previously generated tokens. The authors also employ a global attention mechanism that

provides a more dynamic information flow and increases the representation bandwidth. To avoid

overfitting, they use dropout [22], a technique that injects noise into the input during training

by masking out certain features.

Nisioi et al. [86] experiment with two variants of networks: one with random embedding

weight initialization (NTS), and another with pre-trained embeddings. The latter is built by

concatenating pre-trained word2vec embeddings from the Google News corpus [119] with a

locally trained skip-gram model [120] with hierarchical softmax and a window size of 10. The

concatenation process involves utilizing a unique dictionary associated with the source and target
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embeddings. The authors refer to this variant as Neural Text Simplification with Word2Vec

(NTS-w2v).

3.5.1 Method

Data, source code, and training process are some of the conditions that affect the reproducibility

of a study. Therefore, in order to assess the reproducibility of the work of Nisioi et al. [86], we

first examine the data used for this work, and then shift our attention to the released software

artifacts. We perform these steps to identify potential obstacles to reproducibility and to test

the adequacy of the existing standards. Later, we assess the reproducibility of the reported

automatic evaluations. Although we do not fill out any checklists [33], as they are not created

for the purpose of third-party evaluation, we cover nearly all the concerns they attempt to

address.

Data The data utilized for training and evaluation is a critical component of any machine

learning study. Unsurprisingly, all reproducibility checklists emphasize the importance of data

transparency. Nisioi et al. [86] used a corpus of parallel English Wikipedia and Simple English

Wikipedia (EW-SEW) articles [121] when developing and evaluating their text simplification

model. EW-SEW includes both manually and automatically aligned sentence pairs and was

one of the largest publicly available datasets for text simplification at the time Nisioi et al.

[86]’s paper was published. Sentences in EW-SEW were filtered based on Wiktionary-based

word-level semantic similarity scores included in the dataset, with a retention threshold set at

0.45. This resulted in a final set of 280K+ aligned sentences. EW-SEW does not have standard

validation and test splits; thus, although Nisioi et al. [86] used EW-SEW for training, they used

TurkCorpus [122] for validation and testing. TurkCorpus is considerably smaller than EW-SEW

and consists of 2000 validation and 359 test sentences.
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Split Sentences

train (EW-SEW) 284,677
validation (TurkCorpus) 2,000
test (TurkCorpus) 359

Table 3.3: Distribution of sentence pairs across different data splits, with data sources in
parentheses.

The final distribution of training, validation, and test data is shown in Table 3.3. To

preprocess the data, Nisioi et al. [86] used the Stanford NER system [123] to automatically tag

the locations, persons, organizations, and miscellaneous entities in the dataset. We check the

reproducibility of the preprocessing steps in Subsection 3.5.2 by reviewing the original dataset,

as well as steps taken to filter and process the data.

Research Artifacts Authors may omit purportedly trivial details from research publications due

to strict length limits. Such details may be crucial for later successful replication. Fortunately,

released software artifacts often provide these details and other necessary engineering steps. The

ML Completeness Checklist [28] underlines the inclusion of five items in software artifacts that

facilitate reproducibility and are expected to result in easier adaptability for future researchers:

(1) specification of dependencies, (2) training code, (3) evaluation code, (4) pre-trained models,

and (5) a README file including a table of results accompanied by precise commands to

run and produce those results. Given that Nisioi et al. [86] provided all of these items, we

investigate the quality and the functionality of the released artifacts within this context by

reviewing the aforementioned checklist items, testing out the provided commands, and rebuilding

the environment using provided materials.

Automatic Evaluation Reproducibility and reporting quality are complementary to one another,

and improvements to one often accompany improvements to the other. We include task-agnostic
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metrics and details commonly used in training and evaluations of neural networks [124, 25] in our

assessment of the reproducibility of Nisioi et al. [86]’s automated evaluations. Namely, we check

the number of parameters in the model, the computing infrastructure used to achieve results, and

the total GPU hours required to train the model. We also report the model’s total Floating-Point

Operations (FPO) [125], providing an estimate of the amount of computational work performed

irrespective of the hardware setting. In neural networks, the dominant floating-point operations

are ADD and MUL operations performed by a GPU.

Nisioi et al. [86] evaluated the performance of their neural text simplification approach using

two automated metrics as well as a human performance assessment. Their automated metrics

included BLEU [126, 127], a precision-based metric commonly used for machine translation and

text simplification; and SARI [122], a metric designed specifically for text simplification that

compares the system output against reference output and the input sentence. The evaluation

scripts for these metrics are included in the source code released by the authors. In addition

to calculating the BLEU score using the script provided, we also calculate it using sacreBLEU

v2.1,12 a Python library that aims to unify standards for calculating the BLEU score [83].

Ultimately, these metrics are used on various output files generated by different variants.

At first, we evaluate the original outputs provided by Nisioi et al. [86]. Then, we use the

trained model released by the authors to generate a new output and evaluate it using the

mentioned metrics. Lastly, we use the code and the configuration provided by the authors

in their publication and in their source code to train new models. Using these newly trained

models, we generate yet another set of outputs. During this process, we are reducing the set

of controlled conditions affecting the final results. We expected variation to increase as fewer

conditions are controlled.

We used these metrics to evaluate the performance of our reproduced model, facilitating a
12https://github.com/mjpost/sacrebleu

https://github.com/mjpost/sacrebleu
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direct comparison with the originally reported performance. Instead of viewing the reproducibility

of the automatic evaluations as a binary state, e.g., , reproducible or not reproducible, we use

CV* (defined in Section 1.3) to quantify reproducibility as a measurement precision.

We take one additional step to verify the claims based on the empirical results. We use

paired bootstrap resampling [79] with 1000 samples to compare the performance of the two

main variants on the output files released by Nisioi et al. [86].

3.5.2 Results

In this section, we describe the outcomes of our reproducibility assessment split into three main

categories: data, software artifacts, and automatic evaluation.

Data We were unable to analyze the original unfiltered version of the EW-SEW dataset [121]

as planned because the webpage containing the dataset no longer exists,13 nor could earlier

versions be retrieved using web archival tools (e.g., , the Wayback Machine14). The released

code repository for the selected paper also does not include scripts for filtering the dataset. As

such, we could not review or reproduce the authors’ preprocessing steps. However, the code

repository does contain preprocessed dataset files, which allowed us to perform all other steps

of our reproducibility analysis.

Research Artifacts As mentioned earlier, the authors released a five star repository according

to the ML Completeness Checklist. The authors listed the required external libraries, as well as

Python- and Lua-specific dependencies. Moreover, the authors included a dockerfile containing

the computing environment used for the experiments. Unfortunately, since a self-contained docker

container was not included, it is not possible to rebuild the dockerfile, and most dependencies
13https://crow.ece.uw.edu/tial/projects/simplification/
14https://archive.org/web/

https://crow.ece.uw.edu/tial/projects/simplification/
https://archive.org/web/
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have been deprecated for years. These dependencies include Ubuntu 14.04 with an End of Life

(EOL) of 2019, Python 2.7 with EOL of 2020, Torch7 with last active development in 2017, and

OpenNMT made obsolete in 2018 due to lack of support for Torch7, among others. Ultimately,

we switched to another docker image based on Nvidia’s CUDA 10.1 images that comes with

Torch7 installed. This introduced further complications as recently released GPUs (e.g., , those

in the RTX 3000 series) require CUDA 11 or higher. We avoided this problem for now, but

fixing this problem (which is beyond the scope of our present work) requires porting Torch7 and

rebuilding it using the appropriate CUDA toolkit, which could be extremely challenging.15

Aside from the initial hurdle to get the repository to a running state, we did not face any

major issues in using the software artifacts. [86] provided the training code, evaluation code,

and pre-trained models.16 The README file contains instructions and required commands

to produce the reported results. There were a few minor discrepancies between the provided

instructions and real-world use, but we managed to resolve these issues. We note that the

repository does not contain all configuration files used for each model variant. Hence, we use

the information provided in the paper to recreate those.

In reviewing the source code, we found three issues affecting NTS-w2v variants. We

contacted the authors regarding these issues, and they graciously confirmed the first two. At the

time of writing this dissertation, we have not heard back regarding the third reported issue. We

investigate the impact of the first two issues on the results. These issues are described below.

• Issue 1: Data Contamination: The NTS-w2v models use a multi-step process to

concatenate the pre-trained Google News word2vec embeddings and another embedding

trained by the authors using the skip-gram technique. We found that during the skip-gram

training process, this embedding utilized all datasets (including the development and test

set), introducing data contamination that may call into question those models’ results.
15Issue is reported here: https://github.com/nagadomi/distro/issues/11.
16https://github.com/senisioi/NeuralTextSimplification

https://github.com/nagadomi/distro/issues/11
https://github.com/senisioi/NeuralTextSimplification
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The models affected by this issue are expected to have an advantage over other models.

However, the validation and test sets are many times smaller than the training set, so

performance gains may be negligible to non-existent.

• Issue 2: Mismatched Embedding: This issue occurs during the concatenation process

itself. This process uses two dictionaries, one for the encoder and one for the decoder,

to generate the embedding matrix. However, we found that these embeddings were

mismatched: the encoder used the decoder’s dictionary, and the decoder used the

encoder’s dictionary. We expect fixing this issue will improve the performance of affected

models.

• Issue 3: Zero Embedding Weight: Lastly, we found that the final embedding matrix is

missing the concatenation step, which results in zero vectors for all the words. Using a

zero embedding weight nullifies the embedding pre-training altogether.

Automatic Evaluation We follow the exact training setup provided by Nisioi et al. [86],

training models for 15 epochs with early stopping applied. Unlike the original paper, we did

not tune the model using SARI or BLEU, and used the validation perplexity (lower is better)

for model selection and early stopping. The text simplification is performed using beam search.

Beam search generates the first k hypotheses at each step sorted by log-likelihood of the target

sentence given the input sentence. While the authors experimented with using beam sizes of

5 and 12 and various hypotheses, we limit the scope of our experiments to 5 beams and 1

hypothesis. The hardware used for the experiments in the original paper is not explicitly specified.

In our case, we use an RTX 2080 ti GPU to train the models. Training took approximately

3 hours. The model had 84 million parameters, of which 50 million belong to the embedding

layer. With a maximum sequence length of 80 and a batch size of 1, this model used roughly

3G fpo (3 × 109) in a forward pass.
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Figure 3.3: Validation perplexity of NTS-w2v variants during training (lower is better). †
indicates contaminated conditions, and ‡ indicates mismatched conditions.

Table 3.4 and 3.5 contains the results of the original work [86] referred to as 𝑡1, reproducibility

studies of Cooper et al. [128] (𝑡2) and Belz et al. [10] (𝑡3), and the results calculated by this

work (𝑡4) with their associated conditions. To ease the analysis, the results of every variant,

measure, and output are grouped together. With the two evaluation scripts for calculating

BLEU, we have added six values for BLEU and three for SARI. To be more specific, we have

added automatic evaluation results for the output generated by Nisioi et al. [86] (𝑜1), our own
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output generated by running the trained model provided by Nisioi et al. [86] (𝑜4), and our own

output generated by running our own version of the model (𝑜5). We note that the model that

we trained uses a source with all the fixes applied; however, to the best of our knowledge, all

the other NTS-w2v variants are trained with the mentioned issues. We present the precision

results of the QRA framework in Table 3.6.

The NTS variant has CV* values of 1.92 and 1.94 for SARI and BLEU, respectively. With

3.28 and 2.85 for SARI and BLEU, CV* values for NTS-w2v are slightly worse. However, the

BLEU score of the NTS-w2v variant reported by Cooper et al. [128] seems to be an outlier. By

excluding their score (80.75), CV* reduces to 1.22. There are two other interesting observations

gleaned from Table 3.4 and 3.5. First, our reported results for 𝑜1 exactly match the reported

results by the original paper; this suggests that we successfully recreated the environment they

used for their evaluation. Second, the difference between the reported BLEU for 𝑜1 using the

sacreBLEU evaluation script [10] and that found by our study implies there are still several

unaccounted conditions. We believe the version of sacreBLEU and the process of running this

evaluation script are possible causes for this variation.

Table 3.7 shows results from the paired bootstrap resampling statistical significance test,

with an objective of determining whether the performance of NTS-w2v in terms of BLEU score

is better than the NTS variant. With 𝑝 = 0.0079, the difference is indeed statistically significant.

Since the output of NTS-w2v is generated using a model affected by the zero weight embedding

issue (Issue 3 described in Subsection 3.5.2), these two variants are essentially the same.

Finally, we investigate the issues reported for the NTS-w2v variant. We exclude Issue 3.5.2,

as it simply converts NTS-w2v to NTS with zero embedding weight. We introduce three new

variants:

• NTS-w2v†: NTS-w2v only affected by data contamination.

• NTS-w2v‡: NTS-w2v only affected by mismatched embeddings.
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Ob-
ject

Mea-
surand Output Trained

by

Comp.
by

Eval.
Script by

Per-
formed by

Measured
Value

NTS

BLEU

o1 t1 t1 t1 t1 84.51
o1 t1 t1 t1 t2 84.50
o1 t1 t1 ≈t1 t3 85.60
o1 t1 t1 sb t3 84.20
o1 t1 t1 t1 t4 84.51
o1 t1 t1 sb2.1 t4 84.60
o2 t2 t2 t1 t2 87.46
o3 t1 t3 ≈t1 t3 86.61
o3 t1 t3 sb t3 86.20
o4 t1 t4 t1 t4 86.53
o4 t1 t4 sb2.1 t4 86.60
o5 t4 t4 t1 t4 88.81
o5 t4 t4 sb2.1 t4 88.80

SARI

o1 t1 t1 t1 t1 30.65
o1 t1 t1 t1 t2 30.65
o1 t1 t1 t1 t3 30.65
o1 t1 t1 t1 t4 30.65
o2 t2 t2 t1 t2 29.13
o3 t1 t3 t1 t3 29.96
o4 t1 t4 t1 t4 29.96
o5 t4 t4 t1 t4 30.23

Table 3.4: Detailed results, all utilizing the source code released by Nisioi et al. [86]. Outputs
𝑜1 to 𝑜5 are generated based on their training conditions: 𝑡1=Nisioi et al. [86], 𝑡2=Cooper et al.
[128], 𝑡3=Belz et al. [10], and 𝑡4= this work. sacreBLEU versions are 𝑠𝑏=unknown version,
and 𝑠𝑏2.1=version 2.1.

• NTS-w2v†‡: NTS-w2v affected by data contamination and mismatched embeddings.

The results are shown in Table 3.8. Overall, the results are extremely close. We found that

the variant with the data contaminated outperformed others while NTS-w2v, the variant without

any issues performed worse than the rest. We expected to observe a noticeable performance

difference for the models affected by the mismatched embedding issue, but the performance

gap was ultimately marginal and inconsistent. We report the validation performance during
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Object Mea-
surand Output Trained

by

Comp.
by

Eval.
Script by

Per-
formed by

Measured
Value

NTS-w2v

BLEU

o1 t1 t1 t1 t1 87.50

o1 t1 t1 ≈t1 t3 89.36
o1 t1 t1 sb t3 88.10
o1 t1 t1 t1 t4 87.50
o1 t1 t1 sb2.1 t4 87.90
o2 t2 t2 t1 t2 80.75
o3 t1 t3 ≈t1 t3 89.64
o3 t1 t3 sb t3 88.80
o4 t1 t4 t1 t4 89.40
o4 t1 t4 sb2.1 t4 89.40
o5 t4 t4 t1 t4 87.04
o5 t4 t4 sb2.1 t4 87.10

SARI

o1 t1 t1 t1 t1 31.11
o1 t1 t1 t1 t3 31.11
o1 t1 t1 t1 t4 31.11
o2 t2 t2 t1 t2 30.28
o3 t1 t3 t1 t3 29.12
o4 t1 t4 t1 t4 29.12
o5 t4 t4 t1 t4 29.70

Table 3.5: Detailed results, all utilizing the source code released by Nisioi et al. [86]. Outputs
𝑜1 to 𝑜5 are generated based on their training conditions: 𝑡1=Nisioi et al. [86], 𝑡2=Cooper et al.
[128], 𝑡3=Belz et al. [10], and 𝑡4= this work. sacreBLEU versions are 𝑠𝑏=unknown version,
and 𝑠𝑏2.1=version 2.1.

Object Measurand Sample Size Mean Unbiased STDEV STDEV 95% CI CV*

NTS SARI 8 30.23 0.56 [0.23, 0.89] 1.92
NTS BLEU 13 86.07 1.64 [0.94, 2.34] 1.94
NTS-w2v SARI 7 30.22 0.96 [0.34, 1.58] 3.28
NTS-w2v BLEU 12 87.71 2.45 [1.35, 3.54] 2.85

Table 3.6: CV* and component measures (mean, standard deviation, standard deviation
confidence intervals) for measured quantity values obtained in multiple measurements of the
two NTS systems.
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System BLEU (𝜇 ± 95% CI)

Baseline: NTS-w2v 87.9 (87.9 ± 2.0)
NTS 84.6 (84.6 ± 2.9)

Table 3.7: Statistical significance analysis performed on Nisioi et al. [86]’s released output. With
𝑝 = 0.0079, the difference in reported results between the two variants is statistically significant.

Object Measurand Eval. Script by Measured Value

NTS-w2v BLEU t1 87.04
NTS-w2v BLEU sb2.1 87.10
NTS-w2v SARI t1 29.70
NTS-w2v † BLEU t1 89.43
NTS-w2v † BLEU sb2.1 89.40
NTS-w2v † SARI t1 29.80
NTS-w2v †‡ BLEU t1 89.12
NTS-w2v †‡ BLEU sb2.1 89.10
NTS-w2v †‡ SARI t1 29.58
NTS-w2v ‡ BLEU t1 88.01
NTS-w2v ‡ BLEU sb2.1 88.00
NTS-w2v ‡ SARI t1 29.18

Table 3.8: Results of the experiments tracking performance impacts for identified issues,
computed for this paper using our version of the model, our output, and the evaluation script
provided by Nisioi et al. [86] and sacreBLEU. † indicates contaminated conditions, and ‡ indicates
mismatched conditions.

training to analyze whether there are any differences between these four variants. As shown

in Figure 3.3, the models with mismatched embeddings had a worst start, by a perplexity gap

of almost 15; however, as training progressed, they closed the gap and ended with perplexity

differences of less than 1.

Besides the mentioned analysis, we found it hard to provide distinct and unique observations

from the results. This is likely due to the fact that the results are not conclusive and the

variance is high. We do not believe this is a flaw in our experimental design but rather a good

representation of the complexities of comparing different models across varying conditions. The

number of experiments conducted in this study is more than 60, a number that exceeds the
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number of experiments conducted in most other studies by a large margin.

One of the concerning issues we encountered is the issue of deprecation. While this is not a

new problem, and it is as old as the software itself, it is becoming more and more prevalent.

This is due to extreme reliance on empirical results and the complexity of publications that

utilize neural networks. Often source codes use several external libraries and dependencies, any

of which may become deprecated at any time. Increased availability of source code and the

abundance of tools are signs of a healthy research community. Seeing new tools and libraries

developed and improved daily is encouraging. At the same time, we believe researchers should

practice caution when introducing new tools and libraries into their experiments, as doing so

may shorten the usability of their source code.

3.5.3 Discussion

Taking all our experiments into account, we cannot claim that the performance difference

between different variants comes from the design decisions made during their development.

Perhaps our most surprising finding is that the NTS-w2v variants affected by mismatched

embeddings performed on par with the other variants once training was complete. This extreme

level of resilience is, in fact, quite alarming. Silent bugs like these can easily go unnoticed,

and the results of the experiments can be misleading. Nearly all publications utilizing neural

networks report top-performing empirical results; yet, aside from manual code review and deep

analysis of the final results, there are no other clear signs or warnings that may suggest a bug is

impacting the model.

Due to the age of this repository, getting the project to a running state consumed the most

time. We suspect that the situation will deteriorate as most dependencies are no longer being

actively maintained. Researchers should be hesitant with introducing new dependencies into

their projects. Additionally, we believe it would be fruitful to redirect the time and effort used
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for identifying and reporting dependencies toward exporting self-contained environments. This

is an inadequacy that we found in nearly all of the checklists; in the case of this project, even

though we knew all the requirements, we spent hours debugging different errors.

Many factors can affect the results of an experiment. Some of these factors are under the

experimenter’s control, and some are not. Scientific experiments are developed as a counterpart

to abstraction of real-world problems. Hence, while we use such experiments as “benchmarks,”

focusing on factors and variables that solely affect experimental results undermines the real-world

goal. Datasets are created with this in mind, consisting of training, validation, and test sets

of which the latter, in particular, is created to represent unseen real-world data. Research

on improving the generalization of machine learning algorithms is another good example of

leveraging scientific experiments to understand real-world challenges. In other words, over-

emphasis on miniscule performance gains that could be attributed to variance in evaluation only

serves to undermine the real-world applicability of the research, and the field as a whole.

3.6 Conclusions

While we observed an upward trend in releasing source code within the NLP community and

NeurIPS, submitting the code alone does not seem to be adequate. Even though the community

is heading towards the right direction, our results suggest that often times, the released source

code does not meet a minimum requirement for reproducibility, defined as achieving the results

using the provided source code. This requirement is by no means comprehensive, and it will

evolve as the state of reproducibility improves. However, it could be the first step to assess the

reproducibility of a scientific publication. Furthermore, it aids in debugging and understanding

why a work is not reproducible. After all, determining whether a work is reproducible or not is

not as useful as understanding why that is the case. When it comes to reproducibility standards,

we believe it is time for them to evolve to address the concerns we raise in regard to the quality of
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released source codes. We need to shift the focus from source code to software artifacts. These

artifacts should include a self-contained runtime environment containing scripts for achieving

every single result reported in the paper. Another missing step in current reproducibility

assessments is third-party evaluation at the time of submission. Incorporating this into the

submission pipeline would reduce the creation of additional workload for the reviewers of the

publication. Students and practitioners could be encouraged to partake in the reproducibility

evaluation process.

We explored various challenges faced when attempting to reproduce automatic evaluations

of scientific publications. These challenges vary in complexity from basic issues like syntax errors

and incomplete instructions, to more intricate problems including unavailable datasets, data

contamination, and logical errors in the source code. Despite the progress towards increased

availability of source code, community organizers and conferences should take steps to elevate

the minimum standards for releasing reproducible scientific artifacts in their respective fields.

Any change should be gradual, otherwise it may lead to frustration and resistance from the

community. It is understandable that researchers may not be able to share their data or research

artifacts due to protections for human subjects, General Data Protection Regulation (GDPR),

or other confidentiality and privacy issues. These restrictions are out of the control of the

researchers and should be considered when evaluating the reproducibility of the results. However,

researchers should be encouraged to share as much as possible.

Our recommendations are different from the current focus on reproducibility challenges more

common in the ML and NLP communities, in which researchers are encouraged to not use

research artifacts and instead, reproduce results from scratch. The problem with this approach

is that if the results do not match (which happens often), it is unclear whether this is because of

missing features, bugs in the new implementation, or the irreproducibility of the original results.

In other words, this is jumping two steps ahead. Finding conditions that are required to be
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controlled should be considered an important area of research. This process is also more aligned

with principles of software engineering; a concept that is often ignored in the field of machine

learning despite the increased reliance on empirical results.

Reproducibility is a desired attribute for deep learning models, but it comes with a cost.

There may exist cases in which the required conditions for reproducing the results are not

practical. Defining what is practical, of course, depends on the problem at hand. For example,

reproducing a named entity classifier that requires copying networks’ weights and using the same

hardware may not be considered practical. This is another instance of bias-variance tradeoff.

Bias-variance, a property of statistical and machine learning models, suggests that the variance

of the parameter estimated across samples can be reduced by increasing the bias. A dilemma

exists when trying to minimize these two sources of error simultaneously. We have a dilemma

when it comes to assessing the reproducibility of results. Many attempts have focused on

controlling all the variables. Yet, while they have their use cases, their complexity makes them

less viable. Perhaps a better alternative is to reduce the emphasis on the top-performing results

and utilize techniques that attempt to aggregate and report the results of a set of experiments.

We conclude by underlining that conducting reproducibility evaluations may result in many

failed attempts. While some of these failures may actually be due to bugs or other issues, many

of them may be due to the lack of self-containment or the lack of proper documentation. These

should be seen as another data point in the evaluation process. Ultimately, such reproducibility

evaluations are always impacted by the subjective nature of the evaluation process. However,

the additional scrutiny recommended as a result of this case study would help the field in the

long run. We believe that the recommendations we have provided in this work will help the field

to improve the reproducibility of the research results.

With chapters focused on uncertainty in evaluation and reproducibility of automatic evaluation

finished, we now turn our attention to reproducibility of human evaluation.



Chapter 4

Human Evaluation Reproducibility1

4.1 Introduction

Human evaluations play a critical role in assessing the effectiveness of text generation systems

in NLP. Despite progress in automatic metrics, their limitations, such as poor correlation with

human judgments, persist [129, 130, 131, 132, 133, 83, 134]. Addressing challenges that affect

the reproducibility of human evaluation experiments is thus essential [135].

Using human raters to evaluate algorithms introduces unique challenges. Unlike automated

evaluations, human assessments are not as cost-effective and require the recruitment of skilled

raters, often limiting the number of evaluated samples due to financial constraints. This

frequently necessitates the use of crowd-sourcing platforms such as Amazon Mechanical Turk

(AMT)2 [136, 137, 138].

Efforts to improve the reliability of human evaluations involve measuring inter-rater agreement,

estimating the statistical power for sufficient sample sizes, and applying statistical tests to assess

outcome significance [139, 140, 141, 142, 134]. However, these strategies focus primarily on
1Parts of this chapter were previously published in Arvan et al. [4, 5]
2https://www.mturk.com
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metrics and overlook the evaluation processes themselves, leading to concerns about systematic

approaches to human evaluations [143]. To address these concerns, it is crucial to document and

critically assess procedures within human evaluations. This ensures enhanced transparency and

rigorous verification, adhering to the principles of Open Science, which are vital for improving

reproducibility and validating high-quality research outcomes.

While numerous studies focus on the reproducibility of automated metrics [31, 29, 2, 1],

human evaluations have received less attention due to their complexities [144]. The ReproHum

Project addresses this gap by developing a methodological framework aimed specifically at

enhancing the reproducibility of human assessments in NLP. Drawing from other meta-analytical

efforts [145, 146, 147], this initiative seeks to improve evaluation rigor, transparency, and

reliability. The insights gained will enhance not only reproducibility checks but also the

refinement of human evaluation processes, thus boosting their reliability and academic credibility.

Ultimately, the ReproHum project plans to conduct a large-scale, multi-lab reproducibility study

on NLP studies involving human evaluations.

4.2 Contents of this Chapter

This chapter details the results and analyses of two human evaluation reproductions that we

conducted, in addition to discussing two other paired reproductions executed by colleagues. The

section begins with an overview of the ReproHum project, outlining the methodologies employed

in these human evaluation reproductions. Further, it deepens into the specific experiments

selected for reproduction, including discussions of the original studies, the setups for human

evaluations, and additional insights obtained from the original authors.

Subsequent sections describe any deviations from the original experiments and the adaptations

made to ensure the fidelity of the reproductions. The chapter concludes by presenting the

results of these reproductions, featuring a quantified reproducibility assessment, and discussing
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the broader implications of these findings. The contents of this chapter are edited from our

publications [4, 5] and two paired reproductions conducted by our colleagues [148, 149].

4.3 Background

In the initial phase of the ReproHum Project [144], a pool of 177 papers published in the ACL

or the Transactions of the Association for Computational Linguistics (TACL) between 2018

and 2022 was screened. Criteria for this selection included papers that (a) incorporated human

evaluation components and (b) were accessible publicly. From this collection, a multi-tiered

review process singled out 20 experiments from 15 different papers for reproduction, prioritizing

factors such as the responsiveness of the original authors and the availability of essential

experimental details. Each selected experiment was then categorized based on the number of

evaluators (as few or many), cognitive complexity3 (low, medium, high), and the training and

expertise of evaluators (none, either, or both).

The ReproHum Project subsequently organized the reproduction work into distinct rounds.

The aim of the first round was to replicate the selected experiments faithfully under consistent

conditions across two independent laboratories. Detailed guidelines were provided to these labs

to ensure an exact reproduction, utilizing the methodologies outlined in the original studies and

supplementing these with additional clarifications from the original authors as necessary. Any

deviations from the original experimental framework were meticulously documented, along with

the rationales for such changes. Following this, the reproducibility outcomes were collated and

assessed against the results published originally, evaluating the fidelity of the reproduction. In

this chapter, we present the results of four human evaluation reproductions conducted as part

of round one of the ReproHum Project.

Upon completing the first round, a subset of experiments demonstrating a high degree
3Scores for criteria are detailed in Appendix E of Howcroft et al. [135].
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of reproducibility will advance to the second round. Here, the goal shifted to collaborative

improvement: two laboratories would modify specific aspects of a given experiment to explore

potential enhancements. Both labs would then conduct the revised experiment, evaluate

its reproducibility, and benchmark the new results against the original data. This iterative

process aimed not only to affirm the replicability of results but also to refine methodologies and

ultimately improve the robustness of research findings. At the time of writing this dissertation,

the ReproHum Project is in the final stages of the first round, with the second round set to

commence shortly.

4.4 Method

4.4.1 Common Approach to Reproductions

As a participant in the ReproHum project, our laboratory was equipped with essential materials

and guidelines to facilitate the reproduction of a specified experiment. These materials included:

• A document outlining a standardized approach to experimental reproduction

• The original paper along with the associated data necessary for replication

• Additional supplementary documents

Direct communication with the original authors was intentionally avoided; instead, all interactions

were mediated through the ReproHum organizers. This protocol was established to maintain

consistency across different reproductions and to eliminate any potential authorial bias that

could influence the outcomes.

The guidelines provided delineated the procedures into two main phases—pre-reproduction

and during/post-reproduction. Initially, our tasks included a thorough review of the experimental

paper and preparations for executing the reproduction. This involved calculating appropriate
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compensation for crowd workers and adhering to institutional guidelines. For our team at

the University of Illinois Chicago, securing Institutional Review Board (IRB) approval was a

prerequisite.4 All subsequent activities conformed strictly to the protocols approved by our IRB.

The second phase centered on the actual execution of the experiment and the analysis of

the data obtained. We meticulously filled out the Human Evaluation Data Sheet (HEDS) for

each experimental task. This sheet catalogued detailed entries about the tasks, participants,

and their responses. This facilitated a systematic analysis where we identified various error

types and juxtaposed the newly generated data against the original findings. This side-by-side

comparison was crucial in assessing the fidelity of our reproduction.

4.4.2 Quantified Reproducibility Assessment

We followed the standardized procedure for reproducibility assessment as outlined by the

ReproHum team. For single numerical result scores, we calculated the CV* (defined in Section 1.3)

to quantify the precision of the results. For sets of numerical scores, we calculated Pearson and

Spearman correlations between the reproduced and original results. The Pearson correlation

measures the linear relationship between two sets of scores, and the Spearman correlation

measures the monotonic relationship between two sets of scores. Both correlations range from -1

to 1, where 1 indicates a perfect positive correlation, -1 indicates a perfect negative correlation

(suggesting that the outcomes are diametrically opposed), and 0 indicates no correlation. Using

these metrics, we assessed how closely the reproduced results aligned with the original results.

4.4.3 Experiments Selected for Reproduction

As part of our involvement in the ReproHum project, our laboratory was tasked with replicating

two specific human evaluation experiments. These are Data-to-text Generation with Macro
4IRB Protocol Numbers: STUDY2023-0240 and STUDY2023-1217.
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Planning by Puduppully et al. [150] and Hierarchical Sketch Induction for Paraphrase Generation

by Hosking et al. [151]. With invaluable support from both the original authors and the

ReproHum leadership, we successfully obtained the necessary data and tools to conduct these

replication studies. In the subsequent sections, we detail both the original studies and our

methodologies in replicating these experiments.

4.4.4 Data-to-text Generation with Macro Planning

Paper Summary. In the paper Data-to-text Generation with Macro Planning, Puduppully

et al. [150] enhance a neural model by introducing a macro planning phase for data-to-text

generation tasks. These tasks involve generating descriptive natural language from structured

inputs, such as tabular data or knowledge graphs. Traditional techniques in this domain have

been overtaken by the effectiveness of modern neural models, though these newer approaches

still suffer from significant drawbacks such as inaccuracies, hallucination effects, and suboptimal

context selection and document structuring.

To mitigate these problems, Puduppully et al. [150] suggest the integration of macro

planning, which deals with high-level organization and presentation of information. They point

out limitations within current datasets used for data-to-text generation, noting how most expect

outputs to be organized into various paragraphs—this structure is ideal for applying planned

paragraphing strategies. The methodological framework proposed by the authors involves a

two-step process: generating a macro plan from training data, followed by using this plan to

drive the generation process within a text model.

The efficacy of their method is tested using the RotoWire [152] and MLB [153] datasets,

both of which encompass detailed game statistics and summaries from basketball and baseball,

respectively. Evaluations through both automated metrics and human assessments demonstrated

that the text generated by their approach outperformed current leading models in terms of
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accuracy, coherency, and fluency. The human evaluations compared the gold-standard outputs

and four different text generation systems, including the authors’ model (Macro), a template-

based generator (Templ), the formerly best-performing system ED+CC [152], and the prior

state-of-the-art model RBF-2020 [154].

Human Evaluation. For their human evaluation, Puduppully et al. [150] utilized AMT. To

ensure the quality of the responses, they set specific participation criteria for the workers. These

criteria included a minimum approval rate of 98% from at least 1000 tasks completed previously.

Additionally, participation was restricted to crowd workers residing in primarily English-speaking

countries, namely the US, UK, Canada, Ireland, Australia, and New Zealand.

The evaluation consisted of two distinct tasks. The first task assessed the factual accuracy

of the summaries by examining the number of supporting and contradicting facts related to the

games. The second task, which was our primary focus for reproduction, evaluated the quality of

the generated texts. This evaluation specifically looked at coherence, grammatical correctness,

and conciseness of the text. For this task Puduppully et al. [150] employed a comparative

approach, where workers were prompted to assess two randomly selected summaries. Detailed

instructions were provided to guide the evaluators, as demonstrated in Figures 4.1 and 4.2,

depicting the precise instructions and the input interfaces respectively. Our replication strictly

followed the original setup.

To process the results, the authors implemented a Best-Worst Scaling (BWS) method [155,

156]. The performance of each system was quantified by computing scores based on the instances

a system was chosen as the best minus instances it was chosen as the worst, normalized by the

total appearances of the system. Each of the five competing models (four systems and one gold

standard) were paired into ten combinations, and each pair was then evaluated on three key

aspects: grammar, coherence, and conciseness.

For a thorough analysis, each pair of summaries was presented to three different workers,
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Figure 4.1: Instructions given to AMT workers for this task.

amassing a total of three unique preference assessments per pair. The evaluation spanned 40

summaries (20 for each dataset used) across ten pairs of systems. Factoring in the three criteria

and three evaluations per criterion, the task generated a substantial volume of 3,600 individual

preference ratings. In total, 206 crowd workers participated in this nuanced evaluation task,

contributing to a robust dataset for analysis.
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Figure 4.2: Specific input regions that AMT workers used to rank criteria associated with system
summaries.

Additional Details from the Authors. During our effort to replicate the study outlined

by Puduppully et al. [150], we received crucial additional insights through a document prepared

during interactions between the authors and the ReproHum project team. This document detailed

various aspects of the original human evaluation process, including task setup, instructions for

crowd workers, and quality control measures implemented.

The original authors provided us access to the forms used in AMT for gathering responses,

which were crucial for our accurate replication of the study. They explained that while each

task was to be completed by three different crowd workers, the same workers had the option to

take on multiple tasks. They also specified exclusion criteria for crowd workers to ensure the

response quality was maintained, which we adhered to during our replication.
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In our reproduction study, we structured each evaluation criterion into four mini-batches,

each consisting of a quarter of the total tasks, to maintain manageability and ensure thorough

analysis by the crowd workers. This approach mirrored the organization and the order utilized

by the original authors.

Known Deviations from the Original Experiment

We are aware of several deviations in our reproduction from the original experiment, and we detail

these below. We do not believe that these deviations had a major impact on our reproduction

results.

Scope of Reproduction: The scope of our reproduction was limited to the second human

evaluation task reported in their paper, examining the quality of generated text based on

coherence, grammaticality, and conciseness. Furthermore, we only reproduced the results on

the RotoWire dataset. This was due to our inability to verify the results on the MLB dataset.

Unfortunately, this means the sample size of the reproduction is 20, half of the original study.

Attention Checks: A critical component of maintaining data integrity in the original study

involved attention checks, with specific exclusions applied to workers who failed these checks

during tasks assessing conciseness and coherence. The original authors had exclusion criteria,

particularly excluding workers based on their responses involving the template-based system;

unfortunately, these detailed criteria were no longer accessible. Consequently, we slightly adjusted

our approach based on the guidelines from the ReproHum team.

For conciseness, where the original process annotated specific comparisons, our adaptation

involved using an n-gram-based similarity score computed via NLTK.5 We identified and excluded

workers based on their ratings of twelve pairs that exhibited the highest differences between
5https://www.nltk.org

https://www.nltk.org
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the gold standard and system outputs. Workers who rated highly divergent system outputs as

superior were excluded from further participation in the study.

In the coherence assessments, the exclusion was more straightforward. We excluded workers

who rated the template system’s output as superior to the gold standard. Moreover, leveraging

the results of the other team assigned to this paper—workers excluded from their study were

also excluded from our evaluations, ensuring consistency across parallel studies.

Payment: All participants were compensated for each task completed, irrespective of subse-

quent exclusion, with a payment rate of $0.22 per task. This rate was an increase from the

$0.15 paid in the initial study, adjusted to account for inflation and the local minimum wage

requirements.

4.4.5 Hierarchical Sketch Induction for Paraphrase Generation

Paper Summary. Hosking et al. [151] introduced the Hierarchical Refinement Quantized

Variational Autoencoder (HRQ-VAE), a generative model that employs a syntactic sketch

for paraphrase generation. This approach mirrors human strategies for planning utterances

by incorporating a sketching step into the model to enhance paraphrase generation. The

performance of HRQ-VAE was evaluated against several baseline models on the Paralex [157],

Quora Question Pairs (QQP),6 and MSCOCO datasets [158].

For baseline comparisons, the authors assessed the Gaussian Variational AutoEncoder

(VAE) [159], Latent Bag-of-Words (BoW) [160], and Separator [161], along with other paraphrase

generation systems. They employed iBLEU [162], BLEU, Self-BLEU, and P-BLEU metrics to

automatically evaluate these models on the indicated datasets. iBLEU, the primary assessment

metric, evaluates the quality of paraphrases by checking the faithfulness to the original reference
6https://kaggle.com/competitions/quora-question-pairs

https://kaggle.com/competitions/quora-question-pairs
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paraphrases and the diversity incorporated within the outputs. The evaluation results revealed

top performance from the VAE, Latent BoW, Separator, and HRQ-VAE models.

Human Evaluation. The top four models were subsequently assessed through human evalua-

tion conducted on AMT. This evaluation consisted of 180 Human Intelligence Tasks (HITs),

each comprising 32 paraphrase pairs. Note that the term task is synonymous with HIT in this

context. Each task included two attention checks to validate response quality. AMT workers

were tasked with selecting the superior paraphrase from an input text and outputs from two

competing models, judging based on fluency, meaning, and dissimilarity. Figure 4.3 depicts the

user interface from the original study used during this human evaluation. The exact wording of

the instructions provided in the user interface is included below:

• Which system output is the most fluent and grammatical?

• To what extent is the meaning expressed in the original sentence preserved in the

rewritten version, with no additional information added?

• Does the rewritten version use different words or phrasing to the original? You should

choose the system that uses the most different words or word order.

The authors provided additional information regarding the human evaluation in the appendix

of their paper. Importantly, they reported utilizing AMT ’s feature to make HITs available only

in specific regions, setting their region availability to the United States and the United Kingdom.

Furthermore, they reported that participants were compensated for their time at a rate above

the living wage in the regions selected.

Ultimately, in comparing paraphrase pairs the authors evaluated 300 sentences sampled

equally from the three datasets, with paraphrases generated by each model resulting in a total
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of 1800 paraphrases.7 For a particular pair of two system outputs for a given input sentence,

separately for each of the three criteria, a given system received +1 or -1 depending on whether it

was chosen as the best (+1) or worst (-1). The final scores for each model were then calculated

by averaging the scores across all of that model’s scored samples for a particular criterion. We

refer to this score as BWS [155, 156].

According to the authors, HRQ-VAE was found to be more fluent and more diverse while

maintaining a similar meaning to the original sentence. Figure 4 in their paper shows the results

of the human evaluation. We identified five unique claims based on the human evaluation

results in the original paper. Reproducing the human evaluation experiments allowed us to verify

these claims:

• Claim 1: The VAE baseline is the best at preserving meaning.

• Claim 2: The VAE baseline is the worst at introducing variation to the output.

• Claim 3: HRQ-VAE better preserves the original intent compared to the other systems.

• Claim 4: HRQ-VAE introduces more diversity than VAE.

• Claim 5: HRQ-VAE generates much more fluent output than VAE.

Our goal was to repeat the allocated experiment as closely as possible to the original study.

We set up the experiment using all information available to us from the original paper [151] and

from follow-up communications with the authors by the ReproHum leadership team.

Additional Details from the Authors. The ReproHum team provided us with additional

information obtained from them. Specifically, the authors shared the exact outputs that they

evaluated and the user interface that they used for the human evaluation. Crucially, the authors
7There were four systems; for each comparison, we selected two out of four: (4

2) = 6. With the resulting six
unique comparisons for each of the 300 sentences, we have a total of 6 × 300 = 1800 comparisons.
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Figure 4.3: The user interface used for human evaluation in the original study.

noted that they used attention checks (control samples with known labels). Each task contained

two control samples; in one control sample, the system was a “distractor” and the output was a

random sample with a completely different meaning that should clearly never be chosen as best

for the meaning criterion. The other control sample was when the system’s output was the same

as the input, which should clearly never be chosen as best for the dissimilarity criterion. Note
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that the second control sample was not relevant to our reproduction, as we were reproducing

the results for the meaning criterion. In their communication, the authors mentioned that HITs

for which either of these attention checks were failed were rejected and resubmitted to AMT.

Additionally, they reported compensating participants with $3.50 per HIT with an expected

completion time of 20 minutes.

Known Deviations from the Original Experiment

Similar to the reproduction of Puduppully et al.’s experiment [150], we encountered several

deviations from the original experiment. We detail these deviations below, along with the

rationale for each change.

Scope of Reproduction: We focused on a narrow scope of the original paper: we sought to

reproduce the outcomes of the human evaluation experiments for the meaning criterion.

Crowdsourcing Platform: Our biggest deviation from the original experiment was in the

crowdsourcing platform used. While the original study had utilized AMT, we used Prolific.8

This decision was made across all experiments in the ReproHum project to ensure consistency,

due to limitations in credit usage on AMT and the administrative overhead of managing the

funds for different experiments.

Prolific survey design is different from AMT, and we had to adapt the original survey design

to the Prolific platform. To be more specific, setting up a survey similar to the structure of

HITs was only possible using external survey tools. The ReproHum team shared the code for

hosting a server to run the survey. We used a modified version of the code with additional

checks to ensure the validity of the responses. Furthermore, we added thread safety to prevent
8https://www.prolific.com/

https://www.prolific.com/
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race conditions, where two or more threads try to access or modify the same data at the same

time, leading to unpredictable or incorrect results.

Region Control: Our reproduction also deviated slightly in terms of participant region control.

While the original authors had limited their HIT availability regions to the United States and the

United Kingdom, we followed the region control guidelines of all experiments in the ReproHum

project. This meant that participants from Australia and Canada were also included in addition

to the United States and the United Kingdom.

Participant Selection: The authors reported filtering participants with approval rates less

than 96%, and required that participants had completed at least 5000 HITs. In contrast, we set

the approval rate to 99% and the minimum number of HITs completed to 200. This decision

was based on the recommendations from Prolific to ensure high-quality participants.9

Failed Attention Checks: The original authors reported rejecting HITs for which the attention

checks were failed. We did not reject any HITs based on attention checks per recommendations

from the ReproHum team; however, we solicited new responses for tasks that failed attention

checks.

Participation Limit: The original paper did not report whether a participant could respond to

multiple HITs; we assume that no controls were in place for this. In Prolific, participants cannot

respond to the same study more than once, even though the input data may be different.

Expected Completion Time: The original authors reported that the expected completion

time for a HIT was 20 minutes. Our survey differed from the original study since we only
9https://www.prolific.com/resources/find-filter-favourite-how-to-select-participants-f

or-ai-tasks

https://www.prolific.com/resources/find-filter-favourite-how-to-select-participants-for-ai-tasks
https://www.prolific.com/resources/find-filter-favourite-how-to-select-participants-for-ai-tasks
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collected responses for the meaning criterion. We ran several surveys to estimate the time it

would take to complete the task. Ultimately, we set the expected completion time to 8 minutes.

Payment: The original authors reported compensating participants with $3.50 per HIT for

20 minutes of work, resulting in an hourly rate of $10.50. We followed the guidelines of the

ReproHum project, setting the wage as the minimum living wage in the United Kingdom (which

was higher than our local minimum wage). At the time of data collection, this value was £12

which was equivalent to $15.14 using the exchange rate between UK and US currency at that

time. To be more specific, the participants received £1.60 or $2 for 8 minutes of work.

User Interface: Our institutional consent forms were required to be much more detailed than

those used in the original study, and this was beyond our control. To ensure that the participants

were not overwhelmed, we split the welcome, instructions, and task into three separate pages.

We have included images of the user interface used for the reproduction (Figures 4.4, 4.5,

and 4.6).

4.5 Results

We present the results of each reproduction in its dedicated subsection. The selected statistical

test for each reproduction is Analysis of Variance (ANOVA). ANOVA is a statistical method

used to compare the means of three or more groups. We used ANOVA to compare the means

of the scores for each system in the human evaluation experiments. We also report the results

of the power analysis for each reproduction. The power analysis was conducted using the pwr

package in R.



80

Figure 4.4: The user interface used for the reproduction of human evaluation

4.5.1 Data-to-text Generation with Macro Planning

We begin with the outcomes of the power analysis. The sample size per evaluation criterion

stands at 20. With this size, to detect a large effect size (Cohen’s f=0.4), the power of our

study amounts to 0.90. For a medium effect size (Cohen’s f=0.25), the power is 0.47. Lastly,

for a small effect size (Cohen’s f=0.1), the power is 0.10. These results suggest that our study

is well-powered to detect large effect sizes, but underpowered for medium and small effect sizes.

Note that the original experiment had double the sample size. While that renders the power of

detecting medium effect to a reasonable level of 0.8, the power of detecting small effect remains

low at 0.17. The required sample size to achieve a power of 0.8 for a small effect size is 240.

Our results for the human evaluation of the second task in Data-to-text Generation with

Macro Planning by Puduppully et al. [150] are presented in Tables 4.1, 4.2, and 4.3 for

coherence, grammar, and conciseness, respectively. The results were computed using 1800
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Figure 4.5: The user interface used for the reproduction of human evaluation

responses collected through twelve mini-batches (four for each of the three evaluation criteria).

Each batch took approximately a day to finish collecting all responses. Overall, 262 crowd

workers participated in this task.

The original study reported a Krippendorff’s 𝛼 = 0.47; the details of how this was calculated

were not provided. We calculated Krippendorff’s 𝛼 for our results for each evaluation criterion.

The results were as follows: 𝛼 = −0.01 for coherence, 𝛼 = 0.01 for grammar, and 𝛼 = −0.04

for conciseness. This suggests that the crowd workers’ responses were not in agreement with
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Figure 4.6: The user interface used for the reproduction of human evaluation

System Orig Ours CV* 𝑟 𝜌

Gold 46.25* 12.50 26.01

0.93 0.90
Templ -52.92* -20.00* 51.65
ED+CC -8.33 -7.50 0.90
RBF-2020 4.58 9.17 4.28
Macro 10.42 5.83 4.23

Table 4.1: Comparison of ROTOWIRE performance metrics for coherence. * indicates a
statistically significant difference (𝑝 < 0.05) between Macro and the other systems. Pearson’s
correlation is represented by 𝑟 and Spearman’s correlation is represented by 𝜌. CV* is computed
using 𝑛=2. Note that the Original column numbers are from Table 5 of the original paper,
while the Ours column numbers are from our reproduction.

each other.

We can observe from the results that the magnitude of difference reported between condi-

tions in the original study’s results is much higher than ours. For example, when evaluating

grammaticality, the original study reports a BWS score of -61.67 for the template system (the

lowest score reported among all conditions), while ours is -23.33 (the lowest score reported
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System Orig Ours CV* 𝑟 𝜌

Gold 38.33 14.17 19.08

0.91 0.97
Templ -61.67* -23.33* 66.48
ED+CC 5.00 -8.33 13.52
RBF-2020 13.33 9.17 3.73
Macro 5.00 8.33 3.11

Table 4.2: Comparison of ROTOWIRE performance metrics for grammar. * indicates a
statistically significant difference (𝑝 < 0.05) between Macro and the other systems. Pearson’s
correlation is represented by 𝑟 and Spearman’s correlation is represented by 𝜌. CV* is computed
using 𝑛=2. Note that the Original column numbers are from Table 5 of the original paper,
while the Ours column numbers are from our reproduction.

System Orig Ours CV* 𝑟 𝜌

Gold 30.83 5.83 21.06

0.87 1.00
Templ -36.67* -5.83 39.04
ED+CC -4.58 -5.00 0.44
RBF-2020 3.75 0.83 2.85
Macro 6.67 4.17 2.36

Table 4.3: Comparison of ROTOWIRE performance metrics for conciseness. * indicates a
statistically significant difference (𝑝 < 0.05) between Macro and the other systems. Pearson’s
correlation is represented by 𝑟 and Spearman’s correlation is represented by 𝜌. CV* is computed
using 𝑛=2. Note that the Original column numbers are from Table 5 of the original paper,
while the Ours column numbers are from our reproduction.

among all conditions in our reproduction). Similarly, for coherence, our BWS score of 12.50 is

much smaller than the reported BWS=46.25. We utilized the same statistical significance test

as the original study (a one-way ANOVA with post-hoc Tukey HSD tests). The results of this

test suggest that only two conditions (the Template system’s scores for grammar and coherence)

yield results with statistically significant differences from the Macro system. This is a different

finding from the original study, which reported statistically significant different results for four

measures: Templ for grammar, coherence, and conciseness, and Gold for coherence.

In our analyses of the observed errors, we found a high level of similarity between the original
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experiment and our reproduction. We used Pearson’s 𝑟 and Spearman’s 𝜌 to measure the

correlation between the two experiments. The Pearson correlations for coherence, grammar,

and conciseness were 0.93, 0.91, and 0.87, respectively. Similarly, the Spearman correlations for

coherence, grammar, and conciseness were 0.90, 0.97, and 1.00, respectively.

Next, we discuss the results of a parallel reproduction performed by Miltenburg et al. [148],

henceforth referred to as Lab 1. Our replication efforts are denoted as Lab 2. Given that

Miltenburg et al. [148] have made the raw data publicly available, it facilitates a comprehensive

joint analysis of both sets of responses. The combined study is referred to as Labs 1 and 2.

Figure 4.7 presents the BWS scores for various systems evaluated in Lab 1, while Figure 4.8

illustrates similar scores for the systems assessed in Lab 2. Moreover, Figure 4.9 depicts the

BWS scores for the integrated data from both labs. Surprisingly, although both labs followed

the identical procedure and utilized the same input data, their results are dramatically different.

Additionally, when combining the results from both labs, we observe that the differences between

the systems effectively neutralize each other, indicating little to no disparity between the systems

evaluated.

Given the discrepancies between the results of Labs 1 and 2, low inter-rater agreement, and

low power of the experiment, drawing any meaningful conclusions from the combined data is

challenging. We further discuss the implications of these results in the next section.

4.5.2 Hierarchical Sketch Induction for Paraphrase Generation

Similar to the previous reproduction, we start with the power analysis of the study. There are

four systems, and our sample size is 300. The experiment’s power for detecting a small effect

size (Cohen’s f=0.1) is 0.84. This value is above the desired threshold of 0.80, indicating that

our study is well-powered to detect small effect sizes.

For statistical analysis, we employed ANOVA to determine significant differences among the
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Figure 4.7: Bar plot of the BWS scores for the different systems in Lab 1 (Miltenburg et al.
[148]).

System Orig Ours CV* r 𝜌

VAE 36 37.04 0.76

0.99 1Latent BoW -16 -14.52 1.74
Separator -24 -29.78 7.88
HRQ-VAE 4 7.26 3.08

Table 4.4: Overview of the results of the human evaluation alongside precision metrics to
reflect the degree of reproducibility. Pearson’s correlation is represented by 𝑟 and Spearman’s
correlation is represented by 𝜌. CV* is computed using 𝑛=2. Orig refers to the original results
reported by Hosking et al. [151].

means of multiple independent groups. In conducting the ANOVA test, we observed an F value

of 79.93 with a corresponding 𝑝=3.97e-47. Subsequently, we used Tukey’s HSD test to identify

significant differences between individual groups, revealing significant distinctions among all
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Figure 4.8: Bar plot of the BWS scores for the different systems in Lab 2 (ours).

System Orig Lab 3 CV* r 𝜌

VAE 36 23 43.93

0.99 1Latent BoW -16 -8.67 59.24
Separator -24 -17.89 29.08
HRQ-VAE 4 3.56 11.60

Table 4.5: Overview of the results of the human evaluation alongside precision metrics to reflect
the degree of reproducibility.

groups.

Table 4.4 shows the results of the human evaluation for the selected criterion, comparing

the outcomes from the original and reproduced experiments. Overall, we observe that our

results are very close to the scores originally reported [151]. This is reflected in low CV*

values for all the systems. Pearson correlation and p-value are 𝑟=0.99 and 𝑝=0.01, respectively.
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Figure 4.9: Bar plot of the BWS scores for the different systems in combined responses from
Lab 1 and 2.

Similarly, Spearman correlation and p-value are 𝜌=1.00 and 𝑝=0.00. Both Pearson and

Spearman correlations are very high, indicating a strong relationship between the original and

reproduced scores. Figure 4.10 presents this same information in the format used by the original

paper, showing BWS outcomes for the four systems compared in the original paper and in our

reproduction. We used Krippendorff’s alpha to evaluate the agreement among the categorical

responses collected, resulting in a value of 𝛼=0.51. This metric was not included in the original

study, preventing a direct comparison of our findings.

Next, we discuss the results of a parallel reproduction performed by Watson et al. [149],

henceforth referred to as Lab 3. Table 4.5 presents the results of the human evaluation for

the selected criterion, comparing the outcomes from the original and reproduced experiments.

Unlike the previous reproduction, both reproductions are highly correlated to the original study.
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Claim Verification

The VAE baseline is the best at preserving meaning. Verified

The VAE baseline is the worst at introducing variation to the output. Out of Scope

HRQ-VAE better preserves the original intent compared to the other
systems. Verified

HRQ-VAE introduces more diversity than VAE. Out of Scope

HRQ-VAE generates much more fluent output than VAE. Out of Scope

Table 4.6: Claims and verifications.

Another interesting observation is that the results from Lab 3 have a higher CV* value than

ours. We discuss potential reasons for these discrepancies in the next section.

Overall, given reproduced results’ similarity to and correlation with the originally reported

results, we could easily confirm two out of five of the original claims based on the human

evaluation results. The other three claims were out of scope for our reproduction, as they

pertained to criteria other than meaning. We summarize the claims and our verification in

Table 4.6.

4.6 Discussion

It is important to note that the experiments discussed in this chapter were selected after several

rounds of rigorous filtering. Moreover, the authors of the respective papers demonstrated

exceptional cooperation by supplying additional data and details that are frequently omitted in

scientific publications within this field. Such a commitment to transparency and collaboration

is highly commendable and facilitates a deeper level of critique and understanding. With this

in mind, we can discuss potential reasons for the discrepancies observed in the results of the

reproduced experiments.

To discuss the implications of our findings, we first reiterate the contributions of the work
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Figure 4.10: Results of human evaluation, comparing the original and reproduced systems.

of Puduppully et al. [150] and the scope of our reproduction. Puduppully et al. [150] presented

a novel technique with the goal of improving the quality of data-to-text generation. They used

a combination of automatic and human evaluation methods to show that their approach was

superior to existing state-of-the-art models on two datasets, RotoWire and MLB. The scope

of our reproduction was limited to the second human evaluation task reported in their paper,

examining the quality of generated text based on coherence, grammaticality, and conciseness.

Furthermore, we only reproduced the results on the RotoWire dataset. To provide a better

perspective, the MLB dataset is larger (nearly ten times as many tokens) than the RotoWire

dataset. Hence, we cannot form conclusive judgments based on a full reproduction of this

experiment; rather, we focus on a subset of it that was reproduced in our study.

The variations observed in the reproduction of the experiment by Puduppully et al. [150]
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highlight potential flaws in the experimental design. A power analysis indicates that the

experiment is severely underpowered. Specifically, to detect a small effect size, the sample

size would need to increase twelvefold, from 20 to 240, to achieve an acceptable level of

statistical power. This high variability could likely be attributed to non-representative samples

and insufficient sample sizes.

Unfortunately, reproducing the first experiment with the necessary sample size of 240 is

highly impractical. Such replication would require complete access to the outputs of the trained

models. In the absence of this data, one would need to recreate the entire research from scratch.

This approach is fraught with potential complications as it could introduce additional, unintended

changes and variations in the results. Consequently, achieving a faithful replication under these

circumstances is challenging. Some of these challenges were discussed in the previous chapter

(Chapter 3.1).

Additionally, even within the collected responses, the inter-annotator agreement was notably

low across all evaluation criteria. This low agreement suggests several possible issues: the tasks

may not have been clearly defined, the instructions provided might have lacked clarity, or the

complexity of the task may have exceeded the crowd workers’ domain knowledge, leading to

varied interpretations and responses. Moreover, not every participant encountered attention

checks, which could have further contributed to inconsistent responses. These factors collectively

suggest that the experiment’s design and execution could benefit from major revisions to enhance

reliability and clarity.

Aside from the missing attention checks, the minimum requirements for participation in the

study were set at a 98% approval rate across at least 1000 previously completed tasks. The

impact of pre-screening participants based on these criteria is unclear and could be a future area

of investigation. While these requirements may help ensure the quality of the data collected,

they could also introduce biases. For one, the number of completed tasks is not a reliable
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indicator of a worker’s experience or expertise. Additionally, over time, this number inflates. A

similar concern was raised by González Corbelle et al. [163]. Considering that data collection is

essential to machine learning and NLP research, it is important to ensure the quality of the data

collected. Selecting based on the top 𝑘% of workers could be a simple workaround to eliminate

this reliance on the number of completed tasks.

The findings from the second experiment strongly support the reproducibility of the original

study. This suggests that this study would be an excellent candidate for the subsequent phase

of the ReproHum project. In this next phase, minor modifications could be implemented to

further examine the robustness of the original findings. One potential alteration could involve

replacing the current attention check, which is irrelevant to the meaning criterion, with one

that is more pertinent, thus enhancing the experimental design.

Results from the parallel reproduction conducted by Watson et al. [149] align with our findings,

further affirming the reproducibility of the original study. Nevertheless, we observed higher CV*

values in their results, indicating a higher level of variability. The only documented difference

between the data collection processes of the two studies was the prescreening filters used for the

participants. We utilized the Prolific recommended guidelines for selecting participants, setting

the approval rate to 99% and the minimum number of accepted tasks to 200 while the other

study did not. This analysis is post-hoc and should be interpreted with caution. However, it

does suggest that the number of accepted tasks could be a potential source of variability in

the data collected. Prior to reproductions, researchers should analyze potential impact of each

condition. If the outcome of applying a certain condition varies over time, adjustments should

be made to ensure this factor does not affect the results.
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4.7 Conclusions

In this chapter, we have presented the outcomes of our replication of two experiments from

the ReproHum project, along with the results of a parallel reproduction. Our focus lay on

the human evaluations associated with two papers: Data-to-text Generation with Macro

Planning by Puduppully et al. [150] and Hierarchical Sketch Induction for Paraphrase Generation

by Hosking et al. [151].

Our power analysis of the first experiment disclosed that the study was substantially

underpowered, necessitating a twelvefold increase in sample size to detect a small effect size.

A key conclusion from this chapter is the realization that human evaluations can yield non-

reproducible results if not meticulously designed. Although crowd-sourcing platforms provide

a cost-effective and expedient means for data collection, the integrity of the collected data is

not inherently assured. Realistically, it is advisable to eschew human evaluation in scenarios

where there is insufficient funding to gather an adequate number of responses to discern the

desired effect size rather than risk obtaining unreliable results. Furthermore, power analysis

would ground an empirical study in its potential limitations, thereby enhancing the credibility of

its findings. This is by no means a new insight, yet its importance is ignored in many studies.

This chapter concludes the primary discussions and analyses of the dissertation. In the

following chapter, we summarize the key contributions and conclusions of the dissertation,

providing essential insights and recommendations for the academic community and other

researchers.



Chapter 5

Conclusions and Final Remarks

5.1 Summary of Contributions

This dissertation investigates the application of Open Science principles within the domains of ML

and NLP. It initially addresses the challenges of uncertainty in evaluations from a metrological

standpoint, particularly through the use of NHST. Despite its underutilization in comparison

to other fields, NHST plays a critical role in identifying false discoveries and determining

the required sample sizes for different effect sizes. This dissertation stresses the necessity of

accurately reporting uncertainty to enhance the reproducibility of results and cautions against

under-specification that may hinder future replication efforts.

We identified positive trends in the availability of research artifacts, particularly at conferences

that emphasize the importance of sharing. Subsequently, this work underscores the significance

of releasing self-contained research artifacts that include both the environment and the source

code. Such a practice would obviate the need for manual setup and configuration, which can

introduce complications. Furthermore, it shifts the effort required to setup the project from the

late stage to the very beginning.

Several case studies were conducted, focusing on the reproducibility assessment of various

93



94

publications. The outcomes of these studies were mixed. In some instances, the authors were

responsive and willing to address the issues identified. In other cases, however, the authors

were unresponsive or unable to provide the necessary information. This situation reiterates the

importance of releasing self-contained research artifacts. During the reproduction of a neural

text simplification pipeline, three bugs were identified and subsequently fixed; surprisingly, the

impact of these bugs was negligible.

The penultimate chapter evaluates the reproducibility of human evaluation conducted as

part of the ReproHum initiative. This initiative represents the largest meta-study on the

reproducibility of human evaluations in NLP and related areas. It aims to identify prevalent

issues and establish standards for future human evaluation studies. We reported one successful

and one failed reproduction attempts. Further investigation revealed low statistical power and

low quality of the responses as potential culprits for the failure.

Ultimately, this dissertation focused on reporting and evaluation practices in ML and

NLP. Given the exponential growth of these fields, even modest improvements in research

reproducibility could have substantial impacts. It is hoped that the findings presented here will

encourage researchers to adopt more rigorous, open, and accessible practices, thereby fostering

more reliable and reproducible research landscapes.

5.2 Final Conclusions

This dissertation examined challenges in reproducing both automatic and human evaluations in

ML and NLP research. Although our findings are constrained by the limited number of studies

reviewed, the breadth of identified issues raises important concerns. Despite potential pathways

for enhancement, a comprehensive and immediate resolution seems unattainable without a

drastic shift in research practices and publication norms. Moreover, the current academic

setting discourages thorough and rigorous evaluation, favoring novelty and marginal performance
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improvements instead. Nevertheless, this work demonstrates that focusing on reproducibility and

rigorous evaluation, although challenging, remains achievable. If the problems observed in this

study reflect a broader trend, enhancing the evaluation and reproducibility of machine learning

models will become increasingly crucial. Broader implications of the findings and potential

future directions are as follows.

Perspective of Negative Results and Failed Reproductions: A fundamental part of the

problem resides in the peer-review process. Although most conferences offer specific reviewing

guidelines, more can be done to ensure that reviewers recognize and value studies addressing

reproducibility issues of earlier works. More importantly, it is vital both for the scientific

community and the general public to recognize that scientific publications do not represent the

absolute truth. They should instead be viewed as reflections of the current understanding of

specific issues, inclusive of the methodologies applied. Through critical reviews and replication

efforts, these understandings can be continuously refined and improved. Additionally, a failed

reproduction does not necessarily imply that the original study was incorrect. By reporting

negative results and failed reproduction attempts, researchers can contribute to the collective

knowledge base, fostering a culture of transparency and growth. Arguably, reproduction attempts

are one of the best ways to assess the specificity and adequacy of scientific reports. Moreover,

they can assist in identifying weak aspects of the experiment design.

Reproducibility as a Secondary Priority: In the realm of academic research, the rapid pace

of development coupled with the intense pressure to publish has inadvertently relegated the

importance of reproducibility. Researchers often engage in the iterative modification of complex

models, striving to achieve results deemed publishable, a practice fundamentally flawed as it

bypasses systematic evaluation crucial for verifying model legitimacy over time. As a result,

distinguishing genuine improvements from anomalies becomes increasingly challenging, and
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even significant errors may remain undetected—a situation that is alarming within the scholarly

community. Furthermore, the tendency to provide post-hoc justifications for positive outcomes

exacerbates the issue, undermining the integrity of scientific reporting. It is imperative for the

academic community to recalibrate its focus, prioritizing rigorous verification processes that

enhance reproducibility and uphold the highest standards of scientific inquiry.

Assessing the prevalence of bugs in scientific publications is challenging, yet given the

ubiquitous nature of bugs in software development and the reliance on empirical evidence, it

is plausible to presume a similar situation in scientific literature. Such concerns are magnified

in the realm of machine learning, characterized by the complexity of models and the often

impenetrable nature of the results. In the interest of scientific integrity, researchers need to

prioritize reproducibility from the inception of their projects. Utilizing containers to create

isolated and controllable experimental environments is an effective strategy. This method allows

for the packaging of code, data, and the necessary computational environment, ensuring that

results can be faithfully reproduced by others. Moreover, researchers must diligently manage

the details of their experiments; for instance, inadequately powered experiments can lead to

misleading findings and irreproducible results, undermining the value of the research.

Evaluation and Benchmarks: While benchmarks are commonly used to estimate the real-world

performance of a model on specific tasks, their role has become disproportionately emphasized.

If the ultimate objective is to develop models suited for application in real-world scenarios, it

becomes critical to evaluate them on real-world data. Although benchmarks provide valuable

starting points, they should not represent the final goal. Deploying machine learning pipelines

involves a series of complex steps including data collection, preprocessing, model training, and

evaluation. To move beyond benchmark-focused strategies, utilizing online evaluation emerges

as a more effective method. This approach allows for the continuous assessment of a model in

a real-world context, offering direct insights into its performance. Online evaluations, which
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may be conducted on unlabeled data, enable the definition and application of task-specific

metrics. Additionally, practices such as error analysis and A/B testing enrich understanding

by revealing how models perform under varying conditions. This comprehensive evaluation

framework is essential for developing robust models capable of functioning effectively in practical

applications. In sensitive fields such as healthcare, where model performance directly impacts

patient outcomes, the importance of rigorous evaluation is even more pronounced. Machine

learning holds the potential to significantly improve human lives; however, rushing its deployment

without first building trust could hinder advancement.
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